The selective hydrogenation of propyne to propylene has attracted great attention in chemical industry for removing trace amount of propyne for producing polymer-grade propylene. As the state-of-the-art catalyst, Pd suffers from the disadvantage of poor propylene selectivity due to the over-hydrogenation of propylene to propane. We here demonstrate that Pd nanocubes (NCs) coated by zeolitic imidazolate frameworks (i.e., Pd NCs@ZIF-8) can serve as highly active and selective catalysts for propyne selective hydrogenation (PSH). Benefitting from the unique properties and abundant groups of ZIF-8, Pd carbide (Pd-C) is formed on the surface of Pd NCs after thermal treatment, which acts the active sites for PSH to propylene. More importantly, the content of Pd-C can be precisely controlled by altering the calcination temperature without aggregation of Pd NCs and obvious changes in the framework of ZIF-8. The formation of Pd-C on Pd NCs@ZIF-8 can strongly suppress the H2 adsorption, and thus selectively catalyze propyne to propylene. Consequently, the optimized catalyst (i.e., Pd NCs@ZIF-8-100) exhibits a propylene selectivity of 96.4% at a propyne conversion of 93.3% at 35 °C and atmospheric pressure. This work may not only provide an efficient catalyst for PSH, but also shed a new light on the catalytic application of ZIFs.
- Article type
- Year
- Co-author
The development of Pt-based core/shell nanoparticles represents an emerging class of electrocatalysts for fuel cells, such as methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Here, we present a one-pot synthesis approach to prepare hexagonal PtBi/Pt core/shell nanostructure composed of an intermetallic Pt1Bi1 core and an ultrathin Pt shell with well-defined shape, size, and composition. The structure and the synergistic effect among different components enhanced their MOR and EOR performance. The optimized Pt2Bi nanoplates exhibit excellent mass activities in both MOR (4, 820 mA·mgPt–1) and EOR (5, 950 mA·mgPt–1) conducted in alkaline media, which are 6.15 times and 8.63 times higher than those of commercial Pt/C, respectively. Pt2Bi nanoplates also show superior operation durability to commercial Pt/C. This work may inspire the rational design and synthesis of Pt-based nanoparticles with improved performance for fuel cells and other applications.