Publications
Sort:
Research Article Issue
Simulating the influence of exhaust hood position on ultrafine particles during a cooking process in the residential kitchen
Building Simulation 2020, 13 (6): 1339-1352
Published: 09 June 2020
Abstract PDF (906.1 KB) Collect
Downloads:31

A large amount of ultrafine particles are produced while cooking that seriously endanger human health. This paper uses a computational fluid dynamics model to simulate interior space airflow in an oil-heating process with three exhaust hood positions. Based on the obtained airflow velocity and temperature distributions, combined with the drift flux model, we were able to predict the ultrafine particle distribution with three particle diameters. The results show that exhaust hood positions influence the effect of the air supplement, but do not significantly reduce the concentration of ultrafine particles. When the exhaust hood is placed facing the window, the air supplement improves the capture efficiency but exacerbates the diffusion of ultrafine particles. When placed away from the window and in a corner, the distribution of ultrafine particles in the kitchen is basically the same, but due to the air supplement, the temperature around the personnel at the corner position is effectively reduced. The results also show that the distribution of ultrafine particles can be attributed to the airflow velocity approaching the hood, and warmer supplementary air will cause them to diffuse easily into the surrounding environment. By comparing the particle distributions at 0.01, 0.05, and 0.1 μm particle diameter, it is found that the effect of particle dynamics on the diffusion of ultrafine particles is relatively slight in a limited space. When supplementary air comes from the door, the kitchen's airflow pattern produces some effect as the displacement ventilation. Although the supplementary air from different hood positions have similar effects on the airflow characteristics in the cooking zone, they have different effects on the diffusion of ultrafine particles to the surrounding environment.

Research Article Issue
Simulation of inhalable aerosol particle distribution generated from cooking by Eulerian approach with RNG k–epsilon turbulence model and pollution exposure in a residential kitchen space
Building Simulation 2017, 10 (1): 135-144
Published: 06 September 2016
Abstract PDF (569.9 KB) Collect
Downloads:19

Cooking-generated fume contains large amounts of fine particle pollutants with high concentration. To study the influence of the aerosol particle pollutant in kitchen, a typical format of residential kitchen in northern China is selected in this paper. FLUENT software is applied to simulate interior space airflow as well as pollutant mass fraction in breathing-section and cooking-section area in the residential kitchen under different vent cases. Furthermore, occupant’s exposure to inhalable aerosol particle is obtained integrated with human inhale model and pollution exposure calculation model. The results demonstrate that cooking side of respiratory region in pollutant mass fraction can be significantly reduced when opening the door, but mass fraction gradient is larger in the vicinity of the stove. The average pollution exposure in the maximum value is about 90 times than that of the minimum value around the cooking personnel with the most adverse conditions in winter when the doors and windows are all closed. The research output can provide valuable reference for the further study on fine particles concentration level as well as to determine individual intake fraction of particles generated in the process of cooking in the residential kitchen.

Total 2