Publications
Sort:
Open Access Just Accepted
Transfer Functions of Non-Markovian Linear Quantum Feedback Networks
Cybernetics and Intelligence
Available online: 29 December 2023
Abstract PDF (992.3 KB) Collect
Downloads:31

Enabled by rapidly developing quantum technologies, it is possible to network quantum systems at a much larger scale in the near future. To deal with non-Markovian dynamics that is prevalent in solid-state devices, we propose a general transfer function based framework for modeling linear quantum networks, in which signal flow graphs are applied to characterize the network topology by flow of quantum signals. We define a noncommutative ring D and use its elements to construct Hamiltonians, transformations and transfer functions for both active and passive systems. The signal flow graph obtained for direct and indirect coherent quantum feedback systems clearly show the feedback loop via bidirectional signal flows. Importantly, the transfer function from input to output field is derived for non-Markovian quantum systems with colored inputs, from which the Markovian input-output relation can be easily obtained as a limiting case. Moreover, the transfer function possesses a symmetry structure that is analogous to the well-know scattering transformation in Schrödinger picture. Finally, we show that these transfer functions can be integrated to build complex feedback networks via interconnections, serial products and feedback, which may include either direct or indirect coherent feedback loops, and transfer functions between quantum signal nodes can be calculated by the Riegle’s matrix gain rule. The theory paves the way for modeling, analyzing and synthesizing non-Markovian linear quantum feedback networks in the frequency-domain.

Open Access Issue
Optimization Landscape of Quantum Control Systems
Complex System Modeling and Simulation 2021, 1(2): 77-90
Published: 30 June 2021
Abstract PDF (2.6 MB) Collect
Downloads:75

Optimization is ubiquitous in the control of quantum dynamics in atomic, molecular, and optical systems. The ease or difficulty of finding control solutions, which is practically crucial for developing quantum technologies, is highly dependent on the geometry of the underlying optimization landscapes. In this review, we give an introduction to the basic concepts in the theory of quantum optimal control landscapes, and their trap-free critical topology under two fundamental assumptions. Furthermore, the effects of various factors on the search effort are discussed, including control constraints, singularities, saddles, noises, and non-topological features of the landscapes. Additionally, we review recent experimental advances in the control of molecular and spin systems. These results provide an overall understanding of the optimization complexity of quantum control dynamics, which may help to develop more efficient optimization algorithms for quantum control systems, and as a promising extension, the training processes in quantum machine learning.

Total 2
1/11GOpage