Sort:
Research Article Issue
Fast flow simulation study of pulsating ventilation performance on air contaminant removal
Building Simulation 2024, 17 (8): 1309-1322
Published: 23 July 2024
Abstract PDF (4.4 MB) Collect
Downloads:0

Fast flow simulation is imperative in the design of pulsating ventilation, which is potentially efficient in indoor air contaminant removal. The execution of the conventional CFD method requires considerable amount of computational resources. In this study, five different numerical schemes were proposed based on fast fluid dynamics (FFD) and fractional step (FS) methods, and were evaluated to achieve quick simulation of airflow/contaminant dispersion. One of these numerical schemes was identified with the best overall computing efficiency for investigating the performance of pulsating ventilation. With this numerical scheme at hand, the air contaminant removal effectiveness of different ventilation types was evaluated. Two kinds of pulsating ventilation and one kind of steady ventilation were tested upon a benchmark isothermal mixing chamber. The effect of adjusting supply velocity parameters on the ventilation performance was also investigated. CO2 concentration, airflow pattern, and vortex structure of different ventilation types were illustrated and analyzed. The results reveal that the FS method is more suitable for transient simulation of wall-bounded indoor airflow than the FFD method, and 34%–51% of computing time could be saved compared to the conventional CFD method. Regarding the choice of ventilation type, steady ventilation might result in short-circuit airflow and stagnant zones; alternatively, pulsating ventilation has greater potential in air contaminant removal due to its ever-changing vortex structure.

Research Article Issue
Heat transfer between occupied and unoccupied zone in large space building with floor-level side wall air-supply system
Building Simulation 2020, 13 (6): 1221-1233
Published: 30 May 2020
Abstract PDF (728.6 KB) Collect
Downloads:29

The air supply terminal located at the floor level attached to side-wall is widely used in large space buildings, leading to potential energy saving as well as significant vertical thermal stratification. The cooling load calculation of such system is challenging, especially the calculation of the load gained from unoccupied zone. This paper adopts experiment and computational fluid dynamics (CFD) methods to study the heat transfer upward and downward across the stratified surface in large space building with floor-level side wall air-supply system. Five experimental cases with different heat source power and exhaust airflow ratios are performed to study their effects on the indoor thermal environment. We investigate the same cases in CFD and verify the result of vertical temperature distribution and cooling load components. As a critical parameter in evaluating the thermal stratification environment of large space building, the inter-zonal heat transfer coefficient Cb is emphatically discussed. By comparing the Cb value obtained through the two methods, the accuracy of the microscopic method is verified by the heat balance method. The results show that the Cb value is mainly affected by the zonal division and air distribution, but less prominently by exhaust airflow ratio and heat source in the occupied zone.

Research Article Issue
Inverse tracking of an airborne pollutant source location in a residential apartment by joint simulation of CFD and a multizone model
Building Simulation 2019, 12 (4): 605-616
Published: 14 June 2019
Abstract PDF (989.3 KB) Collect
Downloads:14

Prompt identification of an indoor air pollutant source location is important for the safety of building residents in gaseous contaminant leakage incidents. Using the computational fluid dynamics (CFD) method in such inverse modeling is time consuming, especially for naturally ventilated residential buildings, which have multiple rooms and require consideration both indoor and outdoor environments. This paper compares the results of the pollutant source location identification and the simulation time based on two different inverse modeling methods: the CFD method and joint modeling of the multizone and CFD methods, to discuss the consumption of the computing time, as well as the accuracy of the location identification result. An instantaneous airborne pollutant source is assumed in a typical residential apartment that utilizes natural ventilation. A CFD model with the computational domain of the whole apartment and surrounding environment is built, for which the adjoint probability method is applied to simulate the source location probability from limited sensor readings. Meanwhile, a multizone model of the apartment is built to simulate and identify the room in which the source is located using the adjoint probability method. The CFD method is applied to the identified room afterwards to identify the exact location of the source within that room. The joint simulation of CFD and the multizone model is verified by a scaled model experiment of the apartment. It is found that the joint simulation method can significantly reduce the computing time and provides a good alternative for real-time inverse tracking of the indoor airborne pollutant.

Total 3