Sort:
Open Access Review Article Issue
Development of acoustic computer simulation for performance spaces: A systematic review and meta-analysis
Building Simulation 2022, 15(10): 1729-1745
Published: 13 April 2022
Abstract PDF (1.8 MB) Collect
Downloads:60

This article aims to review the development of acoustic computer simulation for performance spaces. The databases of Web of Science and Scopus were searched for peer-reviewed journal articles published in English between 1960 and 2021, using the keywords for "simulation", "acoustic", "performance space", "measure", and their synonyms. The inclusion criteria were as follows: (1) the searched article should be focused on the field of room acoustics (reviews were excluded); (2) a computer simulation algorithm should be used; (3) it should be clearly stated that the simulated object is a performance space; and (4) acoustic measurements should be used for comparison with the simulation. Finally, twenty studies were included. A standardised data extraction form was used to collect the modelling information, software/algorithm, indicators for comparison, and other information. The results revealed that the most used acoustic indicators were early decay time (EDT), reverberation time (T30), strength (G), and definition (D50). The accuracy of these indicators differed greatly. For non-iterative simulation, the simulation accuracies of most indicators were outside their respective just noticeable differences. Although a larger sample size was required for further validation, simulations of T30, EDT, and D50 all showed an increase in accuracy with increasing time from 1979 to 2020, except for G. In terms of frequency, the simulation was generally less accurate at lower frequencies, which occurred at T30, G, D50 and T20. However, EDT accuracy did not exhibit significant frequency sensitivity. The prediction accuracy of inter-aural cross-correlation coefficients (IACC) was even higher at low frequencies than it was at high frequencies. The average value of most indicators showed a clear systematic deviation from zero, providing hints for future algorithm improvements. Limitations and the risks of bias in this review were discussed. Finally, various types of benchmark tests were suggested for various comparison goals.

Open Access Research Article Issue
Thermal comfort in winter incorporating solar radiation effects at high altitudes and performance of improved passive solar design— Case of Lhasa
Building Simulation 2021, 14(6): 1633-1650
Published: 08 December 2020
Abstract PDF (3.7 MB) Collect
Downloads:36

The solar incidence on an indoor environment and its occupants has significant impacts on indoor thermal comfort. It can bring favorable passive solar heating and can result in undesired overheating (even in winter). This problem becomes more critical for high altitudes with high intensity of solar irradiance, while received limited attention. In this study, we explored the specific overheating and rising thermal discomfort in winter in Lhasa as a typical location of a cold climate at high altitudes. First, we evaluated the thermal comfort incorporating solar radiation effect in winter by field measurements. Subsequently, we investigated local occupant adaptive responses (considering the impact of direct solar irradiance). This was followed by a simulation study of assessment of annual based thermal comfort and the effect on energy-saving potential by current solar adjustment. Finally, we discussed winter shading design for high altitudes for both solar shading and passive solar use at high altitudes, and evaluated thermal mass shading with solar louvers in terms of indoor environment control. The results reveal that considerable indoor overheating occurs during the whole winter season instead of summer in Lhasa, with over two-thirds of daytime beyond the comfort range. Further, various adaptive behaviors are adopted by occupants in response to overheating due to the solar radiation. Moreover, it is found that the energy-saving potential might be overestimated by 1.9 times with current window to wall ratio requirements in local design standards and building codes due to the thermal adaption by drawing curtains. The developed thermal mass shading is efficient in achieving an improved indoor thermal environment by reducing overheating time to an average of 62.2% during the winter and a corresponding increase of comfort time.

Open Access Research Article Issue
Parameter study of sound energy distribution in cuboid extra-large spaces
Building Simulation 2019, 12(5): 835-846
Published: 27 April 2019
Abstract PDF (979 KB) Collect
Downloads:32

The aim of this paper is to explore the sound energy distribution in cuboid extra-large spaces. The surface absorption and height are studied as the parameters using the image method. Air absorption is also discussed in this paper. The results show that the difficulty of reducing the noise increases with the increasing volume in extra-large spaces. Even if the ratio between the equivalent absorption area and the total surface is kept constant, the efficiency of noise reduction decreases by approximately 21% in this study. The absorption areas on the floor and the walls have a better performance on noise reduction than that on the ceiling. When the initial height of an extra-large space with general ratio of three dimensions is continuously halved, the variation in the noise level is close to a fixed value, and when the initial height continuously doubled, the noise level decreased approximately exponentially. The predicted difference between with and without consideration of air absorption increases linearly with the source-receiver distance.

Total 3
1/11GOpage