Extracting knowledge from high-dimensional data has been notoriously difficult, primarily due to the so-called "curse of dimensionality" and the complex joint distributions of these dimensions. This is a particularly profound issue for high-dimensional gravitational wave data analysis where one requires to conduct Bayesian inference and estimate joint posterior distributions. In this study, we incorporate prior physical knowledge by sampling from desired interim distributions to develop the training dataset. Accordingly, the more relevant regions of the high-dimensional feature space are covered by additional data points, such that the model can learn the subtle but important details. We adapt the normalizing flow method to be more expressive and trainable, such that the information can be effectively extracted and represented by the transformation between the prior and target distributions. Once trained, our model only takes approximately 1 s on one V100 GPU to generate thousands of samples for probabilistic inference purposes. The evaluation of our approach confirms the efficacy and efficiency of gravitational wave data inferences and points to a promising direction for similar research. The source code, specifications, and detailed procedures are publicly accessible on GitHub.
- Article type
- Year
- Co-author
The plethora of complex Artificial Intelligence (AI) algorithms and available High-Performance Computing (HPC) power stimulates the expeditious development of AI components with heterogeneous designs. Consequently, the need for cross-stack performance benchmarking of AI-HPC systems has rapidly emerged. In particular, the de facto HPC benchmark, LINPACK, cannot reflect the AI computing power and input/output performance without a representative workload. Current popular AI benchmarks, such as MLPerf, have a fixed problem size and therefore limited scalability. To address these issues, we propose an end-to-end benchmark suite utilizing automated machine learning, which not only represents real AI scenarios, but also is auto-adaptively scalable to various scales of machines. We implement the algorithms in a highly parallel and flexible way to ensure the efficiency and optimization potential on diverse systems with customizable configurations. We utilize Operations Per Second (OPS), which is measured in an analytical and systematic approach, as a major metric to quantify the AI performance. We perform evaluations on various systems to ensure the benchmark’s stability and scalability, from 4 nodes with 32 NVIDIA Tesla T4 (56.1 Tera-OPS measured) up to 512 nodes with 4096 Huawei Ascend 910 (194.53 Peta-OPS measured), and the results show near-linear weak scalability. With a flexible workload and single metric, AIPerf can easily scale on and rank AI-HPC, providing a powerful benchmark suite for the coming supercomputing era.