The lateral flow immunoassay (LFIA) has emerged as a powerful tool for rapid screening owing to its simplicity and flexibility for detection of various biomarkers. However, conventional LFIA strips have several disadvantages, including limits in quantitative analysis and low sensitivity. Here we developed a novel surface-enhanced Raman scattering LFIA based on nonspherical gap-enhanced Raman tags (GERTs), with Raman molecules (RMs) embedded in a 1-nm gap between Au nanorod core and Au shell. Such tags have a strong and uniform surface-enhanced Raman scattering (SERS) response, an order of magnitude higher than that of other common SERS tags such as Au nanorods, nanostars, Au nanoshells with surface-adsorbed RMs, or spherical GERTs with embedded RMs. The feasibility of the tags was demonstrated by the semiquantitative and sensitive detection of the heart disease biomarker cardiac troponin I (cTnI). GERTs were conjugated with monoclonal antibodies and used for LFIA in the same way as ordinary functionalized colloidal gold. The presence of the target antigen, cTnI, was identified by Raman microscopy mapping of the test zone. With the SERS-based LFIA, the limit of cTnI detection was about 0.1 ng/mL. This value is within the diagnostic range of cTnI in the blood serum of patients with heart infarction and is 30 times lower than that of the colorimetric LFIA test using the same antibodies and either GERTs or colloidal gold as labels.
- Article type
- Year
- Co-author
The design and synthesis of plasmonic nanoparticles with Raman-active molecules embedded inside them are of significant interest for sensing and imaging applications. However, direct synthesis of such nanostructures with controllable shape, size, and plasmonic properties remains extremely challenging. Here we report on the preparation of uniform Au@Ag core/shell nanorods with controllable Ag shells of 1 to 25 nm in thickness. 1, 4-Aminothiophenol (4-ATP) molecules, used as the Raman reporters, were located between the Au core and the Ag shell. Successful embedding of reporter molecules inside the core/shell nanoparticles was confirmed by the absence of selective oxidation of the amino groups, as measured by Raman spectroscopy. The dependence of Raman intensity on the location of the reporter molecules in the inside and outside of the nanorods was studied. The molecules in the interior showed strong and uniform Raman intensity, at least an order of magnitude higher than that of the molecules on the nanoparticle surface. In contrast to the usual surface-functionalized Raman tags, aggregation and clustering of nanoparticles with embedded molecules decreased the surface-enhanced Raman scattering (SERS) signal. The findings from this study provide the basis for a novel detection technique of low analyte concentration utilizing the high SERS response of molecules inside the core/shell metal nanostructures. As an example, we show robust SERS detection of thiram fungicide as low as 10-9 M in solutions.