Massive machine-type communications (mMTC) is envisioned to be one of the pivotal scenarios in the fifth-generation (5G) wireless communication, where the explosively emerging Internet-of-Things (IoT) applications have triggered the demand for services with low-latency and high-reliability. To this end, grant-free random access paradigm has been proposed as a promising enabler in simplifying the connection procedure and significantly reducing access latency. In this paper, we propose to leverage the burgeoning reconfigurable intelligent surface (RIS) for grant-free massive access working at millimeter-wave (mmWave) frequency to further boost access reliability. By attaching independently controllable phase shifts, reconfiguring, and refracting the propagation of incident electromagnetic waves, the deployed RISs could provide additional diversity gain and enhance the access channel conditions. On this basis, to address the challenging active device detection (ADD) and channel estimation (CE) problem, we develop a joint-ADDCE (JADDCE) method by resorting to the existing approximate message passing (AMP) algorithm with expectation maximization (EM) to extract the structured common sparsity in traffic behaviors and cascaded channel matrices. Finally, simulations are carried out to demonstrate the superiority of our proposed scheme.
- Article type
- Year
- Co-author
Satellite communication offers the prospect of service continuity over uncovered and under-covered areas, service ubiquity, and service scalability. However, several challenges must first be addressed to realize these benefits, as the resource management, network control, network security, spectrum management, and energy usage of satellite networks are more challenging than that of terrestrial networks. Meanwhile, artificial intelligence (AI), including machine learning, deep learning, and reinforcement learning, has been steadily growing as a research field and has shown successful results in diverse applications, including wireless communication. In particular, the application of AI to a wide variety of satellite communication aspects has demonstrated excellent potential, including beam-hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detecting, interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing. This work thus provides a general overview of AI, its diverse sub-fields, and its state-of-the-art algorithms. Several challenges facing diverse aspects of satellite communication systems are then discussed, and their proposed and potential AI-based solutions are presented. Finally, an outlook of field is drawn, and future steps are suggested.