Publications
Sort:
Research Article Issue
A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties
Nano Research 2016, 9(3): 849-856
Published: 03 February 2016
Abstract PDF (1.3 MB) Collect
Downloads:49

Rh is an important catalyst that is widely used in a variety of organic reactions. In recent years, many efforts have focused on improving its catalytic efficiency by fabricating catalyst nanoparticles with controlled size and morphology. However, the frequently employed synthesis route using organic compounds either as the reaction medium or capping agent often results in residual molecules on the catalyst surface, which in turn drastically diminishes the catalytic performance. Herein, we report a facile, aqueous, surfactant-free synthesis of a novel Rh flowerlike structure obtained via hydrothermal reduction of Rh(acac)3 by formaldehyde. The unique Rh nanoflowers were constructed from ultrathin nanosheets, whose basal surfaces comprised {111} facets with an average thickness of ~1.1 nm. The specific surface area measured by CO stripping was 79.3 m2·g-1, which was much larger than that of commercial Rh black. More importantly, the Rh nanoflower catalyst exhibited excellent catalytic performance in the catalytic hydrogenation of phenol and cyclohexene, in contrast to the commercial Rh black and polyvinyl pyrrolidone (PVP)-capped Rh nanosheets exposed by similar {111} basal surfaces.

Total 1