Microwave-synthesized SiO2-reinforced B-N-co-doped reduced graphene oxide (SiO2-B-N-GO) nanocomposites were characterized by X-ray photon spectroscopy (XPS), X-ray diffraction (XRD), infrared (IR) spectroscopy, and transmission electron microscopy/energy dispersive X-ray (TEM/EDX) analysis. The tribological properties of the SiO2-B-N-GO prepared as anti-wear additives for enhanced lubrication were studied using a four-ball tester. The experiment results indicated that SiO2-B-N-GO exhibits excellent load-carrying, anti-wear, and anti-friction properties in a base oil, especially at the optimal concentration of additives at 0.15 wt%. The wear scar diameter decreased from 0.70 to 0.37 mm and the coefficient of friction was reduced from 0.092 to 0.070, which reductions are attributed to the formation of B-N and graphene layer tribofilms of several tens of nanometers in thickness that prevented direct contact between metals.
Publications
- Article type
- Year
Article type
Year
Open Access
Research Article
Issue
Friction 2021, 9(2): 239-249
Published: 25 April 2020
Downloads:20
Total 1