Sort:
Open Access Research Article Issue
AFM probe with the U-shaped cross-sectional cantilever for measuring the ultra-low coefficient of friction of 10–6
Friction 2024, 12 (8): 1707-1715
Published: 08 February 2024
Abstract PDF (2 MB) Collect
Downloads:3

Accurately measuring the coefficient of friction (COF) is the fundamental prerequisite of superlubricity research. This study aimed to reduce the COF measurement resolution Δμ of atomic force microscopy (AFM). Based on the theoretical model, a distinctive strategy was adopted to reduce Δμ by optimizing the cantilever’s cross-section of the AFM probe, inspired by civil engineering. Δμ can be reduced by decreasing the width of the horizontal side wR and the wall thickness t and increasing the width of the vertical side wH. Moreover, the I-shape demonstrates the highest reduction in Δμ, followed by the U-shape. Considering the processability, the AFM probe with the U-shaped cross-sectional cantilever was investigated further, and the dimensions are 35 μm wR, 3.5 μm wH, 0.5 μm t, 50 μm l (cantilever length), and 23 μm htip (tip height). The finite element analysis results confirm its reliability. After being fabricated and calibrated, the AFM probe achieves the minimal Δμ of 1.9×10–6 under the maximum normal force so far. Additionally, the friction detection capability of the fabricated AFM probe improves by 78 times compared to the commercial tipless-force modulation mode (TL-FM) AFM probe with the conventional solid rectangular cross-sectional cantilever. This study provides a powerful tool for measuring 10–6 COF.

Open Access Research Article Issue
Two material removal modes in chemical mechanical polishing: Mechanical plowing vs. chemical bonding
Friction 2024, 12 (5): 897-905
Published: 15 December 2023
Abstract PDF (2.8 MB) Collect
Downloads:19

With the rapid development of semiconductors, the number of materials needed to be polished sharply increases. The material properties vary significantly, posing challenges to chemical mechanical polishing (CMP). Accordingly, the study aimed to classify the material removal mechanism. Based on the CMP and atomic force microscopy results, the six representative metals can be preliminarily classified into two groups, presumably due to different material removal modes. From the tribology perspective, the first group of Cu, Co, and Ni may mainly rely on the mechanical plowing effect. After adding H2O2, corrosion can be first enhanced and then suppressed, affecting the surface mechanical strength. Consequently, the material removal rate (MRR) and the surface roughness increase and decrease. By comparison, the second group of Ta, Ru, and Ti may primarily depend on the chemical bonding effect. Adding H2O2 can promote oxidation, increasing interfacial chemical bonds. Therefore, the MRR increases, and the surface roughness decreases and levels off. In addition, CMP can be regulated by tuning the synergistic effect of oxidation, complexation, and dissolution for mechanical plowing, while tuning the synergistic effect of oxidation and ionic strength for chemical bonding. The findings provide mechanistic insight into the material removal mechanism in CMP.

Open Access Research Article Issue
AFM probe for measuring ~10−5 ultra-low friction coefficient: Design and application
Friction 2024, 12 (1): 64-73
Published: 04 April 2023
Abstract PDF (2.2 MB) Collect
Downloads:19

Superlubricity provides a novel approach to addressing friction and wear issues in mechanical systems. However, little is known regarding improving the atomic force microscope (AFM) friction coefficient measurement resolution. Accordingly, this study established the theoretical formula for the AFM friction coefficient measurement and deduced the measurement resolution. Then, the formula was applied to the AFM probe with a rectangular cross-section cantilever. The measurement resolution is associated with the dimensional properties of the AFM probe, the mechanical properties of the cantilever material, the properties of the position-sensitive detector (PSD), and probably the anti-vibration performance of the AFM. It is feasible to make the cantilever as short as possible and the tip as high as possible to improve the measurement resolution. An AFM probe for measuring an ultra-low friction coefficient was designed and fabricated. The cantilever’s length, width, and thickness are 50, 35, and 0.6 μm, respectively. The tip height is 23 μm. The measurement resolution can reach 7.1×10−6 under the maximum normal force. Moreover, the AFM probe was applied to measure the superlubricity between graphene layers. The friction coefficient is 0.00139 under 853.08 nN. This work provides a promising method for measuring a ~10−5 friction coefficient of superlubricity.

Open Access Research Article Issue
Exploring the role of --NH2 functional groups of ethylenediamine in chemical mechanical polishing of GCr15 bearing steel
Friction 2021, 9 (6): 1673-1687
Published: 23 November 2020
Abstract PDF (3.7 MB) Collect
Downloads:48

Ethylenediamine with two -NH2 functional groups was used as a critical complexing agent in chemical mechanical polishing (CMP) slurries for a high carbon chromium GCr15 bearing steel (equivalent to AISI 52100). The polishing performance and corresponding mechanism of -NH2 functional groups were thoroughly investigated as a function of pH. It is revealed that, when polished with ethylenediamine and H2O2-based slurries, the material removal rate (MRR) and surface roughness Ra of GCr15 steel gradually decrease as pH increases. Compared with acidic pH of 4.0, at alkaline pH of 10.0, the surface film of GCr15 steel has much higher corrosion resistance and wear resistance, and thus the material removal caused by the pure corrosion and corrosion-enhanced wear are greatly inhibited, resulting in much lower MRR and Ra. Moreover, it is confirmed that a more protective composite film, consisting of more Fe3+ hydroxides/oxyhydroxides and complex compounds with -NH2 functional groups of ethylenediamine, can be formed at pH of 10.0. Additionally, the polishing performance of pure iron and a medium carbon 45 steel exhibits a similar trend as GCr15 steel. The findings suggest that acidic pH could be feasible for amine groups-based complexing agents to achieve efficient CMP of iron-based metals.

Total 4