The electrochemical nitrogen reduction reaction (NRR) as an energy-efficient approach for ammonia synthesis is hampered by the low ammonia yield and ambiguous reaction mechanism. Herein, phosphorus-doped carbon nanotube (P-CNTs) is developed as an efficient metal-free electrocatalyst for NRR with a remarkable NH3 yield of 24.4 μg·h-1·mg-1cat. and partial current density of 0.61 mA·cm-2. Such superior activity is found to be from P doping and highly conjugated CNTs substrate. Experimental and theoretical investigations discover that the electron-deficient phosphorus sites with Lewis acidity should be genuine active sites and NRR on P-CNTs follows the distal pathway. These findings provide insightful understanding on NRR processes on P-CNTs, opening up opportunities for the rational design of highly-active cost-effective metal-free catalysts for electrochemical ammonia synthesis.
Publications
- Article type
- Year
- Co-author
Article type
Year
Research Article
Issue
Nano Research 2020, 13(5): 1376-1382
Published: 15 January 2020
Downloads:38
Total 1