Sort:
Open Access Review Issue
Interface engineering of inverted wide-bandgap perovskite solar cells for tandem photovoltaics
Energy Materials and Devices 2024, 2 (1): 9370031
Published: 28 March 2024
Downloads:279

Wide-bandgap perovskite solar cells (WBG PSCs) have garnered significant research attention for their potential in tandem solar cells. However, they face challenges such as high open-circuit voltage losses and severe phase instability. These issues are primarily owing to the formation of defects, ion migration, and energy level mismatches at the interface of WBG perovskite devices. Meanwhile, inverted PSCs demonstrate superior stability potential and compatibility with tandem devices, making them the most promising application for WBG perovskite materials. Consequently, interface modulation for such devices has become imperative. In this review, from the perspective of applicability in tandem devices, we first provided a concise overview of WBG perovskite research and its efficiency progress in inverted devices. We further discussed interface carrier dynamics and the potential impact of interfaces on such device performance. Afterward, we presented a comprehensive summary of interface engineering in inverted WBG perovskite (1.60 eV–1.80 eV) solar cells. The research particularly explored both the upper and buried interfaces of WBG absorbers in the inverted PSCs, thoroughly investigating interface design strategies and outlining promising research directions. Finally, this review provides insight into the future development of interface engineering for high-performance and large-area WBG PSCs.

Open Access Research Article Issue
Edge-enriched MoS2 for kinetics-enhanced potassium storage
Nano Research 2020, 13 (10): 2763-2769
Published: 05 October 2020
Downloads:13

Potassium-ion batteries (PIBs) hold great promise as alternatives to lithium ion batteries in post-lithium age, while face challenges of slow reaction kinetics induced by the inherent characteristics of large-size K+. We herein show that creating sufficient exposed edges in MoS2 via constructing ordered mesoporous architecture greatly favors for improved kinetics as well as increased reactive sites for K storage. The engineered MoS2 with edge-enriched planes (EE-MoS2) is featured by three-dimensional bicontinuous frameworks with ordered mesopores of ~ 5.0 nm surrounded by thin wall of ~ 9.0 nm. Importantly, EE-MoS2 permits exposure of enormous edge planes at pore walls, renders its intrinsic layer spacing more accessible for K+ and accelerates conversion kinetics, thus realizing enhanced capacity and high rate capability. Impressively, EE-MoS2 displays a high reversible charge capacity of 506 mAh·g-1 at 0.05 A·g-1, superior cycling capacities of 321 mAh·g-1 at 1.0 A·g-1 after 200 cycles and a capacity of 250 mAh·g-1 at 2.0 A·g-1, outperforming edge-deficient MoS2 with nonporous bulk structure. This work enlightens the nanoarchitecture design with abundant edges for improving electrochemical properties and provides a paradigm for exploring high-performance PIBs.

total 2