Sort:
Open Access Original Article Issue
Correlations of residual oil distribution with pore structure during the water flooding process in sandstone reservoirs
Advances in Geo-Energy Research 2024, 12(2): 113-126
Published: 12 April 2024
Abstract PDF (2.7 MB) Collect
Downloads:19

The displacement of residual oil by water flooding in porous media is an important mechanism of enhanced oil recovery in many sandstone reservoirs. Nonetheless, our basic understanding of the influence of complex pore geometries of natural porous media on fluid distribution is still incomplete. Herein, two-phase flow simulations were performed to investigate the pore-scale dynamics of imbibition in a heterogeneous sandstone rock sample. Furthermore, the relationship between residual oil distribution and pore structure parameters was quantitatively characterized based on a pore-throat segmentation method. The findings suggest that the pore-scale displacement and snap-off processes have a strong dependence on the coordination number and aspect ratio. The entrapment and remobilization of oil clusters were also analyzed under continuous and discontinuous displacement modes. In addition, a new quantitative method to evaluate the displacement potential and mobilization pattern of remaining oil was presented and discussed. Statistical analysis revealed that the development of sub-pathways and the suppression of snap-off are responsible for the decrease in residual oil saturation with increasing capillary number during water injection. Moreover, the connected residual oil clusters trapped in pores with high coordination number prefer to be displaced and produced. Finally, the displacement modes with different capillary numbers under different initial oil distributions were evaluated to explain the effect of pore structure. By incorporating these correlations of displacement events with pore-throat geometry, existing predictive models can be improved, which could be helpful for the fine tapping of highly disconnected remaining oil in sandstone reservoirs.

Open Access Original Article Issue
Formation damage mechanism of a sandstone reservoir based on micro-computed tomography
Advances in Geo-Energy Research 2021, 5(1): 25-38
Published: 02 January 2021
Abstract PDF (2.2 MB) Collect
Downloads:137

Formation damage caused by well drilling, completion, oil testing, oil recovery, and stimulation seriously affects oil and gas production, the evaluation of which plays an important role in the process of oilfield development. Thus, it is necessary to study formation damage mechanism from micro scale. In this study, two sets of displacement experiments were conducted using two sandstone samples and two chemical reagents. Each set was divided into three processes: first formation water injection, reverse chemical reagents injection and second formation water injection. According to the results of displacement experiments, the permeability changes of two sandstone samples were analyzed and the formation damage rates of different experimental processes were calculated respectively. In addition, we analyzed the formation damage of the two samples from the macroscopic aspect according to the changes of inlet pressure curves. We compared the pore structure changes of sandstone samples at different experiment processes by computed tomography (CT) images, and found the particle migration phenomenon. Based on the core sensitive regions observed by CT images, the pore network models of the sensitive regions were extracted to quantitatively characterize the change of pore structure parameters (pore radius, throat radius, coordination number and tortuosity). Finally, we designed a two-dimensional microscopic seepage channel model according to the real core structure. The flow rule of solid particles in fluid was simulated by finite element method, and the reason of reservoir clogging was analyzed. Through this study, we found that the injection of chemical reagents increased the inlet pressure and led to the decrease of core permeabilities. There was a negative correlation between the export rate of particle migration and matrix deformation degree.

Total 2