This paper presents a new semi-analytical solution and the related methodology to analyze the pressure behavior of multi-branch wells produced from natural gas hydrates. For constant bottom-hole pressure production, the transient flow solution is obtained by Laplace transforms. The interference among various branches is investigated using the superposition principle. A simplified form of the proposed model is validated using published analytical solutions. The complete flow profile can be divided into nine distinct regimes: wellbore storage and skin, vertical radial flow, linear flow, pseudo-radial flow, composite flow, dissociated flow, transitional flow, improvement flow and stress-sensitive flow. A well's multi-branch structure governs the vertical radial and the linear flow regimes. In our model, a dynamic interface divides the natural gas hydrates deposit into dissociated and non-dissociated regions. Natural gas hydrates formation properties govern the composite-effect, dissociated, transitional, and improvement flow regimes. A dissociation coefficient governs the difference in flow resistance between dissociated and non-dissociated natural gas hydrates regions. The dissociated-zone radius affects the timing of these flow regimes. Conversion of natural gas hydrates to natural gas becomes instantaneous as the dissociation coefficient increases. The pressure derivative exhibits the same features as a homogeneous formation. The natural gas hydrates parameter values in the Shenhu area of the South China Sea cause the prominent dissociated flow regime to conceal the later transitional and improvement flow regimes. Due to the maximum practical well-test duration limitation, the first five flow regimes (through composite flow) are more likely to appear in practice than later flow regimes.


Water-alternating-gas (WAG) injection is recommended as a means of improving gas mobility control. This paper describes a series of coreflood tests conducted to investigate the potential for continuous gas injection and WAG injection in ultra-high water-cut saline reservoirs. The mechanisms of immiscible water-alternating-nitrogen injection on residual oil distribution are analyzed, and pore-scale analysis is conducted. The effect of injection parameters on residual oil distribution and recovery efficiency is also evaluated. Coreflood results show that tertiary oil recovery efficiency is significantly higher using WAG injection than continuous gas injection during the ultra-high water-cut period. Pore-scale visualization illustrates the movement of gas through the waterflooded channels into the pore space previously occupied by water and residual oil, which then becomes trapped. Injected gas breaks the force balance of microscopic residual oil and reduces residual oil saturation. This mobilizes the displaced/collected residual oil into large waterfilled pores and blocks several water channels. WAG flooding can decrease free-gas saturation and increase trapped-gas saturation significantly, resulting in decreased relative permeabilities of gas and water. The experimental results indicate that appropriate WAG design parameters could enhance recovery by 15.62% when the injected pore volume of water and gas in the cycle is 0.3 PV at a gas/water injection ratio of 2:1. The results from this study will allow researchers and reservoir engineers to understand and implement immiscible WAG injection as an enhanced oil recovery method in ultra-high water-cut stage reservoirs.