Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems, we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based on their integration of visualization techniques and computational models. We conclude with potential research directions and opportunities.
- Article type
- Year
- Co-author
Channel pruning can reduce memory consumption and running time with least performance damage, and is one of the most important techniques in network compression. However, existing channel pruning methods mainly focus on the pruning of standard convolutional networks, and they rely intensively on time-consuming fine-tuning to achieve the performance improvement. To this end, we present a novel efficient probability-based channel pruning method for depth-wise separable convolutional networks. Our method leverages a new simple yet effective probability-based channel pruning criterion by taking the scaling and shifting factors of batch normalization layers into consideration. A novel shifting factor fusion technique is further developed to improve the performance of the pruned networks without requiring extra time-consuming fine-tuning. We apply the proposed method to five representative deep learning networks, namely MobileNetV1, MobileNetV2, ShuffleNetV1, ShuffleNetV2, and GhostNet, to demonstrate the efficiency of our pruning method. Extensive experimental results and comparisons on publicly available CIFAR10, CIFAR100, and ImageNet datasets validate the feasibility of the proposed method.
Trajectory prediction is a fundamental and challenging task for numerous applications, such as autonomous driving and intelligent robots. Current works typically treat pedestrian trajectories as a series of 2D point coordinates. However, in real scenarios, the trajectory often exhibits randomness, and has its own probability distribution. Inspired by this observation and other movement characteristics of pedestrians, we propose a simple and intuitive movement description called a trajectory distribution, which maps the coordinates of the pedestrian trajectory to a 2D Gaussian distribution in space. Based on this novel description, we develop a new trajectory prediction method, which we call the social probability method. The method combines trajectory distributions and powerful convolutional recurrent neural networks. Both the input and output of our method are trajectory distributions, which provide the recurrent neural network with sufficient spatial and random information about moving pedestrians. Furthermore, the social probability method extracts spatio-temporal features directly from the new movement description to generate robust and accurate predictions. Experiments on public benchmark datasets show the effectiveness of the proposed method.
Dynamic changes of traffic features in unstructured road networks challenge the scene-cognitive abilities of drivers, which brings various heterogeneous traffic behaviors. Modeling traffic with these heterogeneous behaviors would have significant impact on realistic traffic simulation. Most existing traffic methods generate traffic behaviors by adjusting parameters and cannot describe those heterogeneous traffic flows in detail. In this paper, a cognition-driven trafficsimulation method inspired by the theory of cognitive psychology is introduced. We first present a visual-filtering model and a perceptual-information fusion model to describe drivers’ heterogeneous cognitive processes. Then, logistic regression is used to model drivers’ heuristic decision-making processes based on the above cognitive results. Lastly, we apply the high-level cognitive decision-making results to low-level traffic simulation. The experimental results show that our method can provide realistic simulations for the traffic with those heterogeneous behaviors in unstructured road networks and has nearly the same efficiency as that of existing methods.