Sort:
Open Access Issue
An Integrated Observer Framework Based Mechanical Parameters Identification for Adaptive Control of Permanent Magnet Synchronous Motor
Complex System Modeling and Simulation 2022, 2 (4): 354-367
Published: 30 December 2022
Abstract PDF (4 MB) Collect
Downloads:54

An integrated observer framework based mechanical parameters identification approach for adaptive control of permanent magnet synchronous motors is proposed in this paper. Firstly, an integrated observer framework is established for mechanical parameters’ estimation, which consists of an extended sliding mode observer (ESMO) and a Luenberger observer. Aiming at minimizing the influence of parameters coupling, the viscous friction and the moment of inertia are obtained by ESMO and the load torque is identified by Luenberger observer separately. After obtaining estimates of the mechanical parameters, the optimal proportional integral (PI) parameters of the speed-loop are determined according to third-order best design method. As a result, the controller can adjust the PI parameters in real time according to the parameter changes to realize the adaptive control of the system. Meanwhile, the disturbance is compensated according to the estimates. Finally, the experiments were carried out on simulation platform, and the experimental results validated the reliability of parameter identification and the efficiency of the adaptive control strategy presented in this paper.

Open Access Issue
Dynamic Performance Prediction in Batch-Based Assembly System with Bernoulli Machines and Changeovers
Complex System Modeling and Simulation 2022, 2 (3): 224-237
Published: 30 September 2022
Abstract PDF (1.5 MB) Collect
Downloads:23

Worldwide competition and diverse demand of customers pose great challenges to manufacturing enterprises. How to organize production to achieve high productivity and low cost becomes their primary task. In the mean time, the rapid pace of technology innovation has contributed to the development of new types of flexible automation. Hence, increasing manufacturing enterprises convert to multi-product and small-batch production, a manufacturing strategy that brings increased output, reduced costs, and quick response to the market. A distinctive feature of small-batch production is that the system operates mainly in the transient states. Transient states may have a significant impact on manufacturing systems. It is therefore necessary to estimate the dynamic performance of systems. As the assembly system is a typical class of production systems, in this paper, we focus on the problem of dynamic performance prediction of the assembly systems that produce small batches of different types of products. And the system is assumed to be characterized with Bernoulli reliability machines, finite buffers, and changeovers. A mathematical model based on Markovian analysis is first derived and then, the analytical formulas for performance evaluation of three-machine assembly systems are given. Moreover, a novel approach based on decomposition and aggregation is proposed to predict dynamic performance of large-scale assembly systems that consist of multiple component lines and additional processing machines located downstream of the assemble machine. The proposed approach is validated to be highly accurate and computationally efficient when compared to Monte Carlo simulation.

Open Access Issue
Hybrid Deep Learning Model for Short-Term Wind Speed Forecasting Based on Time Series Decomposition and Gated Recurrent Unit
Complex System Modeling and Simulation 2021, 1 (4): 308-321
Published: 31 December 2021
Abstract PDF (7 MB) Collect
Downloads:60

Accurate wind speed prediction has been becoming an indispensable technology in system security, wind energy utilization, and power grid dispatching in recent years. However, it is an arduous task to predict wind speed due to its variable and random characteristics. For the objective to enhance the performance of forecasting short-term wind speed, this work puts forward a hybrid deep learning model mixing time series decomposition algorithm and gated recurrent unit (GRU). The time series decomposition algorithm combines the following two parts: (1) the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and (2) wavelet packet decomposition (WPD). Firstly, the normalized wind speed time series (WSTS) are handled by CEEMDAN to gain pure fixed-frequency components and a residual signal. The WPD algorithm conducts the second-order decomposition to the first component that contains complex and high frequency signal of raw WSTS. Finally, GRU networks are established for all the relevant components of the signals, and the predicted wind speeds are obtained by superimposing the prediction of each component. Results from two case studies, adopting wind data from laboratory and wind farm, respectively, suggest that the related trend of the WSTS can be separated effectively by the proposed time series decomposition algorithm, and the accuracy of short-time wind speed prediction can be heightened significantly mixing the time series decomposition algorithm and GRU networks.

Total 3