Sort:
Open Access Research Article Issue
EfficientPose: Efficient human pose estimation with neural architecture search
Computational Visual Media 2021, 7 (3): 335-347
Published: 07 April 2021
Abstract PDF (14.6 MB) Collect
Downloads:47

Human pose estimation from image and video is a key task in many multimedia applications. Previous methods achieve great performance but rarely take efficiency into consideration, which makes it difficult to implement the networks on lightweight devices. Nowadays, real-time multimedia applications call for more efficient models for better interaction. Moreover, most deep neural networks for pose estimation directly reuse networks designed for image classification as the backbone, which are not optimized for the pose estimation task. In this paper, we propose an efficient framework for human pose estimation with two parts, an efficient backbone and an efficient head. By implementing a differentiable neural architecture search method, we customize the backbone network design for pose estimation, and reduce computational cost with negligible accuracy degradation. For the efficient head, we slim the transposed convolutions and propose a spatial information correction module to promote the performance of the final prediction. In experiments, we evaluate our networks on the MPII and COCO datasets. Our smallest model requires only 0.65 GFLOPs with 88.1% PCKh@0.5 on MPII and our large model needs only 2 GFLOPs while its accuracy is competitive with the state-of-the-art large model, HRNet, which takes 9.5 GFLOPs.

Regular Paper Issue
Weakly- and Semi-Supervised Fast Region-Based CNN for Object Detection
Journal of Computer Science and Technology 2019, 34 (6): 1269-1278
Published: 22 November 2019
Abstract Collect

Learning an effective object detector with little supervision is an essential but challenging problem in computer vision applications. In this paper, we consider the problem of learning a deep convolutional neural network (CNN) based object detector using weakly-supervised and semi-supervised information in the framework of fast region-based CNN (Fast R-CNN). The target is to obtain an object detector as accurate as the fully-supervised Fast R-CNN, but it requires less image annotation effort. To solve this problem, we use weakly-supervised training images (i.e., only the image-level annotation is given) and a few proportions of fully-supervised training images (i.e., the bounding box level annotation is given), that is a weakly- and semi-supervised (WASS) object detection setting. The proposed solution is termed as WASS R-CNN, in which there are two main components. At first, a weakly-supervised R-CNN is firstly trained; after that semi-supervised data are used for finetuning the weakly-supervised detector. We perform object detection experiments on the PASCAL VOC 2007 dataset. The proposed WASS R-CNN achieves more than 85% of a fully-supervised Fast R-CNN’s performance (measured using mean average precision) with only 10% of fully-supervised annotations together with weak supervision for all training images. The results show that the proposed learning framework can significantly reduce the labeling efforts for obtaining reliable object detectors.

Total 2