Sort:
Regular Paper Issue
A Comparative Study of CNN- and Transformer-Based Visual Style Transfer
Journal of Computer Science and Technology 2022, 37 (3): 601-614
Published: 31 May 2022
Abstract Collect

Vision Transformer has shown impressive performance on the image classification tasks. Observing that most existing visual style transfer (VST) algorithms are based on the texture-biased convolution neural network (CNN), here raises the question of whether the shape-biased Vision Transformer can perform style transfer as CNN. In this work, we focus on comparing and analyzing the shape bias between CNN- and transformer-based models from the view of VST tasks. For comprehensive comparisons, we propose three kinds of transformer-based visual style transfer (Tr-VST) methods (Tr-NST for optimization-based VST, Tr-WCT for reconstruction-based VST and Tr-AdaIN for perceptual-based VST). By engaging three mainstream VST methods in the transformer pipeline, we show that transformer-based models pre-trained on ImageNet are not proper for style transfer methods. Due to the strong shape bias of the transformer-based models, these Tr-VST methods cannot render style patterns. We further analyze the shape bias by considering the inuence of the learned parameters and the structure design. Results prove that with proper style supervision, the transformer can learn similar texture-biased features as CNN does. With the reduced shape bias in the transformer encoder, Tr-VST methods can generate higher-quality results compared with state-of-the-art VST methods.

Open Access Review Article Issue
Transformers in computational visual media: A survey
Computational Visual Media 2022, 8 (1): 33-62
Published: 27 October 2021
Abstract PDF (5.2 MB) Collect
Downloads:73

Transformers, the dominant architecture for natural language processing, have also recently attracted much attention from computational visual media researchers due to their capacity for long-range representation and high performance. Transformers are sequence-to-sequence models, which use a self-attention mechanism rather than the RNN sequential structure. Thus, such models can be trained in parallel and can represent global information. This study comprehensively surveys recent visual transformer works. We categorize them according to task scenario: backbone design, high-level vision, low-level vision and generation, and multimodal learning. Their key ideas are also analyzed. Differing from previous surveys, we mainly focus on visual transformer methods in low-level vision and generation. The latest works on backbone design are also reviewed in detail. For ease of understanding, we precisely describe the main contributions of the latest works in the form of tables. As well as giving quantitative comparisons, we also present image results for low-level vision and generation tasks. Computational costs and source code links for various important works are also given in this survey to assist further development.

Total 2