Sodium ion batteries (SIBs) are alternatives to lithium ion batteries (LIBs), and offer some significant benefits such as cost reduction and a lower environmental impact; however, to compete with LIBs, further research is required to improve the performance of SIBs. In this study, an orthorhombic Na super ionic conductor structural Fe2(MoO4)3 nanosheet with amorphous-crystalline core-shell alignment was synthesized using a facile low-temperature water-vapor-assisted solid-state reaction and applied as a cathode material for SIBs. The obtained material has a well-defined three-dimensional stacking structure, and exhibits a high specific capacity of 87.8 mAh·g-1 at a current density of 1 C = 91 mA·g-1 after 1, 000 cycles, which is due to the considerable contribution of extra surface-related reaction such as the pseudo-capacitive process. This material shows significantly improved cycling and rated behavior as well as enhanced performance under high- and low-temperature conditions, as compared to the same materials prepared by the conventional high-temperature solid-state reaction. This enhancement is explained by the unique morphology in combination with the improved kinetics of the electrochemical reaction due to its lower charge transfer resistance and higher sodium ion conductivity.
Publications
- Article type
- Year
- Co-author
Article type
Year
Research Article
Issue
Nano Research 2021, 14(11): 3977-3987
Published: 06 February 2021
Downloads:25
Total 1