It is vitally important to develop high-efficiency low-cost catalysts to boost oxygen reduction reaction (ORR) for renewable energy conversion. Herein, an A-CoN3S1@C electrocatalyst with atomic CoN3S1 active sites loaded on N, S-codoped porous carbon was produced by an atomic exchange strategy. The constructed A-CoN3S1@C electrocatalyst exhibits an unexpected half-wave potential (0.901 V vs. reversible hydrogen electrode) with excellent durability for ORR under alkaline conditions (0.1 M KOH), superior to the commercial platinum carbon (20 wt.% Pt/C). The outstanding performance of A-CoN3S1@C in ORR is due to the positive effect of S atoms doping on optimizing the electron structure of the atomic CoN3S1 active sites. Moreover, the rechargeable zinc-air battery in which both A-CoN3S1@C and IrO2 were simultaneously served as cathode catalysts (A-CoN3S1@C &IrO 2) exhibits higher energy efficiency, larger power density, as well as better stability, compared to the commercial Pt/C&IrO2-based zinc-air battery. The present result should be helpful for developing lower cost and higher performance ORR catalysts which is expected to be used in practical applications in energy devices.
Publications
Article type
Year
Research Article
Issue
Nano Research 2022, 15(3): 1803-1808
Published: 15 August 2021
Downloads:62