Publications
Sort:
Research Article Issue
High activity of hot electrons from bulk 3D graphene materials for efficient photocatalytic hydrogen production
Nano Research 2017, 10(5): 1662-1672
Published: 27 February 2017
Abstract PDF (741.7 KB) Collect
Downloads:16

Design and synthesis of efficient photocatalysts for hydrogen production via water splitting are of great importance from both theoretical and practical viewpoints. Many metal-based semiconductors have been explored for this purpose in recent decades. Here, for the first time, an entirely carbon-based material, bulk three-dimensionally cross-linked graphene (3DG), has been developed as a photocatalyst for hydrogen production. It exhibits a remarkable hydrogen production rate of 270 μmol·h−1·gcat−1 under full-spectrum light via a hot/free electron emission mechanism. Furthermore, when combined with the widely used semiconductor TiO2 to form a TiO2/3DG composite, it appears to become a more efficient hydrogen production photocatalyst. The composite achieves a production rate of 1, 205 μmol·h−1·gcat−1 under ultraviolet–visible (UV–vis) light and a 7.2% apparent quantum efficiency at 350 nm due to the strong synergetic effects between TiO2 and 3DG.

Total 1