Publications
Sort:
Open Access Research paper Issue
The study of the effect of online review on purchase behavior: Comparing the two research methods
International Journal of Crowd Science 2020, 4(1): 73-86
Published: 14 February 2020
Abstract PDF (441 KB) Collect
Downloads:120
Purpose

The purpose of this paper is to explain the difference and connection between the network big data analysis technology and the psychological empirical research method.

Design/methodology/approach

This study analyzed the data from laboratory setting first, then the online sales data from Taobao.comTaobao.com to explore how the influential factors, such as online reviews (positive vs negative mainly), risk perception (higher vs lower) and product types (experiencing vs searching), interacted on the online purchase intention or online purchase behavior.

Findings

Compared with traditional research methods, such as questionnaire and behavioral experiment, network big data analysis has significant advantages in terms of sample size, data objectivity, timeliness and ecological validity.

Originality/value

Future study may consider the strategy of using complementary methods and combining both data-driven and theory-driven approaches in research design to provide suggestions for the development of e-commence in the era of big data.

Open Access Research paper Issue
The prediction role of feeling of injustice on network social mobilization: The mediating role of anger and resentment
International Journal of Crowd Science 2019, 3(2): 155-167
Published: 16 July 2019
Abstract PDF (191.9 KB) Collect
Downloads:11
Purpose

By drawing on the research paradigm of collective action that occurs in physical space, the present study aims to explore the antecedent predictors of network social mobilization – feeling of injustice – and discuss the emotional mechanism of this prediction: mediating effect of anger and resentment.

Design/methodology/approach

Micro-blog postings about network social mobilization were collected to develop the dictionary of codes of fairness, anger and resentment. Then, according to the dictionary, postings on Sina Weibo were coded and analyzed.

Findings

The feeling of injustice predicted network social mobilization directly. The predictive value was 27% and 33%, respectively during two analyses. The feeling of injustice also predicted social mobilization indirectly via anger and resentment. In other words, anger and resentment account for the active mechanism in which the feeling of injustice predicts network social mobilization. Mediating effect value was 29.63% and 33.33% respectively.

Research limitations/implications

This study is our first exploration to use python language to collect data from human natural language pointing on micro-blog, a large number of comments of netizen about certain topic were crawled, but a small portion of the comments could be coded into analyzable data, which results in a doubt of the reliability of the study. Therefore, we should put the established model under further testing.

Practical implications

In the cyberspace, this study confirms the mechanism of network social mobilization, expands and enriches the research on social mobilization and deepens the understanding of social mobilization.

Social implications

This study provides an empirical evidence to understand the network social mobilization, and it gives us the clue to control the process of network social mobilization.

Originality/value

This study uses the Python language to write Web crawlers to obtain microblog data and analyze the microblog content for word segmentation and matching thesaurus. It has certain innovation.

Total 2