Sonodynamic therapy (SDT) has aroused considerable momentum in cancer therapy due to its abilities of deep penetration, low toxicity, and noninvasion, while insufficient tumor accumulation of sonosensitizers is a major obstacle for SDT effect. Here, we developed a 4T1 cancer cell-macrophage hybrid membrane (HM)-camouflaged sonosensitizer nanoplatform by encapsulating photochlor (HPPH)-loaded albumin nanoparticles (PHNPs). The experimental results proved that the HM-coated biomimetic NPs (PHNPs@HM) could express the characteristic membrane proteins of both cancer cells and macrophages, remarkedly enhancing the effective targeting and endocytosis to 4T1 cells through homologous adhesion recognition and immune escaping. Meanwhile, as a novel sonosensitizer, HPPH could generate amount of reactive oxygen species (ROS) under ultrasound (US) irradiation and exhibit obvious SDT efficiency to inhibit 4T1 tumor growth through ROS-induced cell apoptosis. This study provides a novel and multifunctional biomimetic sonosensitizer system to enhance SDT efficiency.
Publications
- Article type
- Year
- Co-author
Article type
Year
Research Article
Issue
Nano Research 2022, 15(5): 4224-4232
Published: 18 January 2022
Downloads:77
Total 1