Hydrogen is a low-carbon and clean energy source that can be produced from a wide range of sources, and the vigorous development of hydrogen energy industry is an important measure to achieve the dual-carbon goal and cope with the global energy transition. In the whole industry chain of "preparation–storage–transportation–application" of hydrogen energy, the difficulty of hydrogen storage has long been a constraint to the high-quality development of hydrogen energy industry. Salt cavern hydrogen storage has outstanding advantages such as low cost, large scale, high safety, and high hydrogen storage purity, which is an important development direction of large-scale hydrogen storage in the future, and also a major strategic demand during China's low-carbon energy transition. The current situations of hydrogen production industry and hydrogen energy consumption in China were comprehensively investigated, and the demand for salt cavern hydrogen storage in China was further analyzed. The technology and engineering status of using salt caverns to store natural gas and hydrogen in foreign countries were investigated, and the development and construction history of salt cavern storage in China were summarized. The similarities and differences of using salt caverns to store natural gas, helium, compressed air, and hydrogen were compared, and three major scientific and technological challenges that salt cavern hydrogen storage in Chin faces were proposed: hydrogen seepage and biochemical reaction in bedded salt rock, wellbore integrity control in salt cavern hydrogen storage, and pregnancy and prevention of disaster in hydrogen storage groups. The research results clearly define the rapid growth trend of hydrogen storage demand and the key research directions of large-scale salt cavern hydrogen storage in China.
Publications
- Article type
- Year
- Co-author
Article type
Year
![](/assets/img/article/article-lock.png)
Rock and Soil Mechanics 2024, 45(1): 1-19
Published: 17 January 2024
Downloads:100
![](/assets/img/article/article-lock.png)
Advances in Geo-Energy Research 2021, 5(4): 351-352
Published: 25 August 2021
Downloads:95
Total 2