Sort:
Open Access Original Article Issue
Dynamic mechanisms of tight gas accumulation and numerical simulation methods: Narrowing the gap between theory and field application
Advances in Geo-Energy Research 2023, 8 (3): 146-158
Published: 31 May 2023
Abstract PDF (1.9 MB) Collect
Downloads:33

Despite the significant progress made in tight gas exploration and development in recent years, the understanding of the dynamic mechanisms of tight gas accumulation is still limited, and numerical simulation methods are lacking. In fact, the gap between theory and field application has become an obstacle to the development of tight gas exploration and development. This work sheds light on the dynamic mechanisms of hydrocarbon accumulation in tight formations from the aspect of capillary self-sealing theory by embedding calculation of pressure- and temperature-dependent capillary force in a pore network model. The microscale dynamic mechanisms are scaled up to the reservoir level by geological simulation, and the quantitative evaluation of reserves based on real geological sections is realized. From the results, several considerations are made to assist with resource assessment and sweet spot prediction. Firstly, the self-sealing effect of capillary in the micro-nano pore-throat system is at the core of tight sandstone gas accumulation theory; the hydrocarbon-generated expansion force is the driving force, and capillary force comprises the resistance. Furthermore, microscopic capillary force studies can be embedded into a pore network model and scaled up to a geological model using relative permeability curve and capillary force curve. Field application can be achieved by geological numerical simulations at the reservoir scale. Finally, high temperature and high pressure can reduce capillary pressure, which increases gas saturation and reserves.

Open Access Original Article Issue
Paleoenvironment and chemostratigraphy heterogenity of the Cretaceous organic-rich shales
Advances in Geo-Energy Research 2021, 5 (4): 444-455
Published: 07 December 2021
Abstract PDF (924.1 KB) Collect
Downloads:256

The Cretaceous Qingshankou Formation in the Songliao Basin is rich in shale oil resources, which has become one of the most important exploration targets of lacustrine shale oil in China. Based on X-ray fluorescence element analysis, X-ray diffraction analysis, total organic carbon, rock pyrolysis, scanning electron microscope and nitrogen adsorption, the Paleoenvironment was reconstructed by comprehensive utilization of integrated prediction error filter analysis of chemical stratigraphy, and its relationship with organic geochemistry, mineralogy and pore structure was discussed. The results indicated that the Qingshankou Formation was deposited in the environment with fresh water-brackish water, semi-deep/deep water and strong reduction. The evolution of Paleoenvironment during the deposition of Qingshankou Formation changed from bottom to top, with increasing water depth, decreasing salinity and oxygen content. Paleosalinity was positively correlated with total organic carbon, residual hydrocarbon and carbonate mineral content. From bottom to top, the contents of carbonate and chlorite decreased, while the contents of plagioclase and clay minerals increased slightly. The pores were dominated by intra-illite pores, intra-I/S mixed-layer pores and intra-pyrite pores. Some intra-plagioclase pores and calcite dissolution pores were developed, and the organic matter pores are slightly few. Nitrogen adsorption data showed that the dominate pore size was 40-53 nm. This study clarifies the Paleoenvironmental evolution of the Qingshankou Formation, and may shed lights on lacustrine shale oil accumulation and sweet-spotting.

Total 2