Publications
Article type
Sort:
Open Access Research Issue
Adults have more male-biased sex ratios than first-winter juveniles in wintering duck populations
Avian Research 2021, 12 (1): 51
Published: 05 October 2021
Abstract PDF (1,023.9 KB) Collect
Downloads:21
Background

The long-term monitoring of demographic changes in waterbird populations remains limited, but such information can be valuable for conservationists and waterbird managers. Biased sex ratios can indicate differences in survival rates between sexes. In particular, differences in the sex ratios of fledged juveniles and adults can provide insight into the development of male bias among populations.

Methods

In this study, we used data from individual birds captured over a 57-year period to assess the extent, and temporal variability in male bias in nine populations of ducks wintering in the United Kingdom: Gadwall (Mareca strepera), Northern Mallard (Anas platyrhynchos), Northern Pintail (Anas acuta), Common Pochard (Aythya ferina), Common Shelduck (Tadorna tadorna), Northern Shoveler (Spatula clypeata), Eurasian Teal (Anas crecca), Tufted Duck (Aythya fuligula), and Eurasian Wigeon (Mareca penelope).

Results

Overall, eight of these populations were significantly male-biased and adults were more male-biased than first-winter juveniles for all nine populations. The increased male bias among adults is consistent with the hypothesis that factors such as higher mortality of reproductive-age females during the breeding season is a major cause of male bias in duck populations. However, such predation cannot explain the male bias detected in first-winter juveniles in four of the populations. The temporal trends in male bias differed between adults and first-winter juveniles in Northern Mallard, Northern Pintail, Common Pochard, Common Shelduck, Eurasian Teal, Tufted Duck, and Eurasian Wigeon. Over the study period we found increased male bias among adult Northern Mallard, Northern Pintail, Common Pochard, Common Shelduck, and Tufted Duck as well as both adult and first-winter juvenile Northern Shoveler.

Conclusions

We provide evidence that among wintering duck populations, sex ratios are typically male-biased, with adults exhibiting stronger male-biased sex ratios than first-winter juveniles. Improved monitoring of sex ratios of wintering waterbirds would help to increase our understanding of changes in waterbird demography, population structure, and observed population trends; our study shows that birds caught during ringing projects can be a valuable source of such data.

Open Access Research Issue
Behavioural and energetic consequences of competition among three overwintering swan (Cygnus spp.) species
Avian Research 2021, 12 (1): 48
Published: 21 September 2021
Abstract PDF (2.1 MB) Collect
Downloads:15
Background

Winter numbers of the northwest European population of Bewick's Swans (Cygnus columbianus bewickii) declined recently by c. 40%. During the same period, numbers of two sympatric and ecologically-similar congeners, the Mute Swan (Cygnus olor) and Whooper Swan (Cygnus cygnus) showed increases or stability. It has been suggested that these opposing population trends could have a causal relationship, as Mute and Whooper Swans are larger and competitively dominant to Bewick's Swans in foraging situations. If so, effects of competition of Mute and Whooper Swans on Bewick's Swans should be detectable as measurable impacts on behaviour and energetics.

Methods

Here, we studied the diurnal behaviour and energetics of 1083 focal adults and first-winter juveniles ("cygnets") of the three swan species on their winter grounds in eastern England. We analysed video recordings to derive time-activity budgets and these, together with estimates of energy gain and expenditure, were analysed to determine whether individual Bewick's Swans altered the time spent on key behaviours when sharing feeding habitat with other swan species, and any consequences for their energy expenditure and net energy gain.

Results

All three swan species spent a small proportion of their total time (0.011) on aggressive interactions, and these were predominantly intraspecific (≥0.714). Mixed-effects models indicated that sharing feeding habitat with higher densities of Mute and Whooper Swans increased the likelihood of engaging in aggression for cygnet Bewick's Swans, but not for adults. Higher levels of interspecific competition decreased the time spent by Bewick's Swan cygnets on foraging, whilst adults showed the opposite pattern. When among low densities of conspecifics (< c. 200 individuals/km2), individual Bewick's Swans spent more time on vigilance in the presence of higher densities of Mute and Whooper Swans, whilst individuals within higher density Bewick's Swan flocks showed the opposite pattern. Crucially, we found no evidence that greater numbers of interspecific competitors affected the net energy gain of either adult or cygnet Bewick's Swans.

Conclusions

We found no evidence that Bewick's Swan net energy gain was affected by sharing agricultural feeding habitat with larger congeners during winter. This was despite some impacts on the aggression, foraging and vigilance behaviours of Bewick's Swans, especially among cygnets. It is unlikely therefore that competition between Bewick's Swans and either Mute or Whooper Swans at arable sites in winter has contributed to the observed decline in Bewick's Swan numbers. Further research is needed, however, to test for competition in other parts of the flyway, including migratory stopover sites and breeding areas.

Total 2