Sort:
Open Access Full Length Article Issue
Behavior pattern mining based on spatiotemporal trajectory multidimensional information fusion
Chinese Journal of Aeronautics 2023, 36(4): 387-399
Published: 02 November 2022
Abstract Collect

Trajectory data mining is widely used in military and civil applications, such as early warning and surveillance system, intelligent traffic system and so on. Through trajectory similarity measurement and clustering, target behavior patterns can be found from massive spatiotemporal trajectory data. In order to mine frequent behaviors of targets from complex historical trajectory data, a behavior pattern mining algorithm based on spatiotemporal trajectory multidimensional information fusion is proposed in this paper. Firstly, spatial–temporal Hausdorff distance is proposed to measure multidimensional information differences of spatiotemporal trajectories, which can distinguish the behaviors with similar location but different course and velocity. On this basis, by combining the idea of k-nearest neighbor and density peak clustering, a new trajectory clustering algorithm is proposed to mine behavior patterns from trajectory data with uneven density distribution. Finally, we implement the proposed algorithm in simulated and radar measured trajectory data respectively. The experimental results show that the proposed algorithm can mine target behavior patterns from different complex application scenarios more quickly and accurately compared to the existing methods, which has a good application prospect in intelligent monitoring tasks.

Open Access Issue
Observation-Driven Multiple UAV Coordinated Standoff Target Tracking Based on Model Predictive Control
Tsinghua Science and Technology 2022, 27(6): 948-963
Published: 21 June 2022
Abstract PDF (10.2 MB) Collect
Downloads:123

An observation-driven method for coordinated standoff target tracking based on Model Predictive Control (MPC) is proposed to improve observation of multiple Unmanned Aerial Vehicles (UAVs) while approaching or loitering over a target. After acquiring a fusion estimate of the target state, each UAV locally measures the observation capability of the entire UAV system with the Fisher Information Matrix (FIM) determinant in the decentralized architecture. To facilitate observation optimization, only the FIM determinant is adopted to derive the performance function and control constraints for coordinated standoff tracking. Additionally, a modified iterative scheme is introduced to improve the iterative efficiency, and a consistent circular direction control is established to maintain long-term observation performance when the UAV approaches its target. Sufficient experiments with simulated and real trajectories validate that the proposed method can improve observation of the UAV system for target tracking and adaptively optimize UAV trajectories according to sensor performance and UAV-target geometry.

Total 2