Sort:
Open Access Research Article Issue
Altitudinal migration behavior patterns of birds on the eastern slope of Mt. Gongga, China
Avian Research 2023, 14 (3): 100114
Published: 30 June 2023
Abstract PDF (2 MB) Collect
Downloads:9

Many bird species in montane regions exhibit altitudinal migration behavior; however, altitudinal migration of birds is still understudied, especially in Asia. Mt. Gongga (7556 ​m) is the highest peak of the Hengduan Mountains in Southwest China. The steep elevation gradient and the high bird diversity make the eastern slope of Mt. Gongga (Hailuo Valley) an ideal place for studying the altitudinal migration behavior patterns of birds. We synchronously recorded the local bird diversity, temperature and humidity at two sites (1800 and 3000 ​m a.s.l.) during three migration seasons from September 2020 to June 2021 to identify birds exhibiting altitudinal migration behavior. During our surveys, we recorded 146 bird species in total and 20 passerine bird species were altitudinal migrants according to our altitudinal migration formula. Among those 20 altitudinal migrant species, eight bird species displayed a typical altitudinal migration pattern (upward migration during the breeding season and downward migration during the non-breeding season). Moreover, temperature was correlated with the daily number of individuals (DNI) at each study site. Therefore, increasing temperatures possibly caused upward migration of birds (DNI decreased at 1800 ​m and increased at 3000 ​m) and vice versa. To further elaborate, the Rufous-gorgeted Flycatcher (Ficedula strophiata), the species with the most prominent altitudinal migration behavior, initiated upward migration at a temperature of 11–12 ​℃ at 1800 ​m and initiated downward migration at a temperature of 12–13 ​℃ at 3000 ​m. Besides, humidity was positively correlated with the DNI. Therefore, increasing humidity (equals to increasing rainfall or snow) possibly caused downward migration of birds (DNI increased) and vice versa. Furthermore, bird species exhibiting a typical altitudinal migration behavior pattern are feeding on insects. Thus, the spatial and temporal changes of the invertebrate biomass might be an important ecological driver for the altitudinal migration of invertivorous (birds eating invertebrates) birds. This study provides fundamental data for the altitudinal migration of birds in the Hengduan Mountains and shows how altitudinal migration is seasonally dynamic across an elevational gradient in a subtropical mountain region.

Open Access Research Article Issue
Ecological traits affect the seasonal migration patterns of breeding birds along a subtropical altitudinal gradient
Avian Research 2022, 13 (4): 100066
Published: 17 October 2022
Abstract PDF (1.3 MB) Collect
Downloads:18

Altitudinal bird migration involves seasonal shifts up and down the altitude gradient annually. Asia as the place with the largest number of altitudinal migrants, has quite few related studies, especially for montane and temperate avifaunas. To explore the potential drivers of seasonal altitudinal migration for birds in the middle of Hengduan Mountains, we conducted a three-year investigation on breeding and non-breeding season bird communities at eight elevational bands (1200–4200 ​m) in the Gongga Mountains. We examined the altitudinal migration patterns and relationships between seasonal distribution shifts and species' traits of 50 species with sufficient data recorded in both seasons. We found that a large proportion of breeding birds underwent altitudinal migration and showed three migration patterns (downslope shift, upslope shift, no shift). Seasonal distribution shifts were mainly correlated with certain ecological traits. Species breeding at high and mid-elevations, nesting in scrub and being omnivorous are more likely to show downslope movements during the non-breeding season. In addition, territorially weaker species exhibited more diverse migration patterns. Notably, we found the hand-wing index (HWI) was actually more convincing than body mass in explaining altitudinal migration. These results consolidate the studies of seasonal altitudinal migration in montane birds. Our study could be used to bridge existing knowledge gaps that currently impeding effective conservation for montane avifaunas in the Hengduan Mountains.

Open Access Research Article Issue
Comparative analysis of the intestinal tract microbiota and feeding habits of five sympatric flycatchers
Avian Research 2022, 13 (3): 100050
Published: 19 July 2022
Abstract PDF (6.2 MB) Collect
Downloads:18

Gut microbiota and host interactions co-evolve and develop into stably adapted microbial communities and play vital roles in maintaining the health of organisms. Diet is supposed to be an important driver of differences in gut microbiota, but previous studies would commonly use literature depictions, which are essential but inaccurate, to explain the effects of diet on the gut microbiota of wild birds. In this study, we collected intestinal samples from five sympatric flycatchers to compare the gut microbial differences using bacterial 16S rRNA genes from Illumina MiSeq platform. Over 1,642,482 quality-filtered sequences from 18 16S rRNA libraries were obtained and distinct compositions and diversities of gut microbiota were found in five flycatchers. Their gut microbiota is mainly from the four bacterial phyla of Proteobacteria, Firmicutes, Actinomycetes, and Bacteroidetes, but at the genus level showed a significant difference. Functional predictions revealed that the metabolic capacity of the gut microbiota of five flycatchers is greatly distinguished at KEGG level 3. And multiple food fragments showed a significant correlation with gut microbiota. Besides, the significant differences in the specific composition of the diets of the five insectivorous flycatchers indicated the differentiation of dietary niches. The study of the gut microbiota and feeding habits of sympatric flycatchers would increase the understanding of the gut microbial diversity of wild birds, and also improve our cognition of the co-evolution and co-adaptation within the host gut microbiota relations.

Open Access Research Issue
Habitat use and diel activity pattern of the Tibetan Snowcock (Tetraogallus tibetanus): a case study using camera traps for surveying high-elevation bird species
Avian Research 2019, 10 (1): 4
Published: 04 February 2019
Abstract PDF (749.3 KB) Collect
Downloads:28
Background

Global climate change has had significant effects on animal distribution and population dynamics in mid-latitude alpine areas, but we know little about the basic ecology of high-altitude species due to the difficulties of conducting field research in the harsh climate and habitat present at high elevations. The Tibetan Snowcock (Tetraogallus tibetanus) is a little-known phasianid distributing in alpine areas at extremely high elevations in the mountains surrounding the Tibetan Plateau. Estimating the species occupancy rate and discussing the factors affecting its distribution based on infrared-triggered camera techniques would provide both a baseline to measure the influence of global warming and valuable information on its conservation and ecology.

Methods

We used infrared-triggered cameras to investigate the Tibetan Snowcock on the western slope of Mt. Gongga from June to November 2016. We used the R package "overlap" to visualize its activity pattern, and used an occupancy model to both examine its habitat use as well as to determine the most influential variables affecting its habitat use.

Results

Using 103 camera traps over 9213 camera-days, we recorded 428 instances of Tibetan Snowcock. The diel activity peaks of Tibetan Snowcock occurred during the periods of 8:00-10:00 am and 18:00-20:00 pm. The model estimate of occupancy for Tibetan Snowcock (0.830) was slightly higher than the na?ve site occupancy based on camera detections (0.663), indicating a wider use of habitat than the camera traps recorded. Elevation, slope, settlement density, road density, and EVI (enhanced vegetation index) were the most influential variables for its habitat use.

Conclusions

The Tibetan Snowcock is confirmed to be diurnal. This species prefers an environment with a high elevation, gentle slope, and low EVI, apparently facing a trade-off between predator risk, foraging efficiency, and food availability. When human impact was low, there was a positive correlation between the habitat use of the Tibetan Snowcock and both its road and settlement densities. Infrared cameras and proper survey design are valuable for investigating extreme alpine phasianids.

Open Access Research Issue
Elevational patterns of bird species richness on the eastern slope of Mt. Gongga, Sichuan Province, China
Avian Research 2019, 10 (1): 1
Published: 03 January 2019
Abstract PDF (1.6 MB) Collect
Downloads:31
Background

In biological systems, biological diversity often displays a rapid turn-over across elevations. This defining feature has made mountains classic systems for studying the spatial variation in diversity. Because patterns of elevational diversity can vary among lineages and mountain systems it remains difficult to extrapolate findings from one montane region to another, or among lineages. In this study, we assessed patterns and drivers of avian diversity along an elevational gradient on the eastern slope of Mt. Gongga, the highest peak in the Hengduan Mountain Range in central China, and a mountain where comprehensive studies of avian diversity are still lacking.

Methods

We surveyed bird species in eight 400-m elevational bands from 1200 to 4400 m a.s.l. between 2012 and 2017. To test the relationship between bird species richness and environmental factors, we examined the relative importance of seven ecological variables on breeding season distribution patterns: land area (LA), mean daily temperature (MDT), seasonal temperature range (STR), the mid-domain effect (MDE), seasonal precipitation (SP), invertebrate biomass (IB) and enhanced vegetation index (EVI). Climate data were obtained from five local meteorological stations and three temperature/relative humidity smart sensors in 2016.

Results

A total of 219 bird species were recorded in the field, of which 204 were recorded during the breeding season (April-August). Species richness curves (calculated separately for total species, large-ranged species, and small-ranged species) were all hump-shaped. Large-ranged species contributed more to the total species richness pattern than small-ranged species. EVI and IB were positively correlated with total species richness and small-ranged species richness. LA and MDT were positively correlated with small-ranged species richness, while STR and SP were negatively correlated with small-ranged species richness. MDE was positively correlated with large-ranged species richness. When we considered the combination of candidate factors using multiple regression models and model-averaging, total species richness and large-ranged species richness were correlated with STR (negative) and MDE (positive), while small-ranged species richness was correlated with STR (negative) and IB (positive).

Conclusions

Although no single key factor or suite of factors could explain patterns of diversity, we found that MDE, IB and STR play important but varying roles in shaping the elevational richness patterns of different bird species categories. Model-averaging indicates that small-ranged species appear to be mostly influenced by IB, as opposed to large-ranged species, which exhibit patterns more consistent with the MDE model. Our data also indicate that the species richness varied between seasons, offering a promising direction for future work.

Total 5