Publications
Sort:
Open Access Review Issue
Quantum computing in power systems
iEnergy 2022, 1(2): 170-187
Published: 15 July 2022
Abstract PDF (1.1 MB) Collect
Downloads:558

Electric power systems provide the backbone of modern industrial societies. Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems. However, today’s power systems are suffering from ever-increasing computational burdens in sustaining the expanding communities and deep integration of renewable energy resources, as well as managing huge volumes of data accordingly. These unprecedented challenges call for transformative analytics to support the resilient operations of power systems. Recently, the explosive growth of quantum computing techniques has ignited new hopes of revolutionizing power system computations. Quantum computing harnesses quantum mechanisms to solve traditionally intractable computational problems, which may lead to ultra-scalable and efficient power grid analytics. This paper reviews the newly emerging application of quantum computing techniques in power systems. We present a comprehensive overview of existing quantum-engineered power analytics from different operation perspectives, including static analysis, transient analysis, stochastic analysis, optimization, stability, and control. We thoroughly discuss the related quantum algorithms, their benefits and limitations, hardware implementations, and recommended practices. We also review the quantum networking techniques to ensure secure communication of power systems in the quantum era. Finally, we discuss challenges and future research directions. This paper will hopefully stimulate increasing attention to the development of quantum-engineered smart grids.

Open Access Article Issue
Whole system value of long-duration electricity storage in systems with high penetration of renewables
iEnergy 2022, 1(1): 114-123
Published: 25 March 2022
Abstract PDF (619.3 KB) Collect
Downloads:211

Energy storage is a key enabling technology to facilitate an efficient system integration of intermittent renewable generation and support energy system decarbonisation. However, there are still many open questions regarding the design, capacity, and value of long-duration electricity storage (LDES), the synergy or competition with other flexibility technologies such as demand response, short-duration storage, and other forms of energy storage such as hydrogen storage. This paper presents a novel integrated formulation of electricity and hydrogen systems to identify the roles and quantify the value of long-duration energy storage holistically. A spectrum of case studies has been performed using the proposed approach on a future 2050 net-zero emission system background of Great Britain (GB) with a high share of renewable generation and analysed to identify the value drivers, including the impact of prolonged low wind periods during winter, the impact of different designs of LDES, and its competitiveness and synergy with other technologies. The results demonstrate that high storage capacity can affect how the energy system will evolve and help reduce system costs.

Total 2