Nowadays, more automated or robotic twin-crane systems (RTCSs) are employed in ports and factories to improve material handling efficiency. In a twin-crane system, cranes must travel with a minimum safety distance between them to prevent interference. The crane trajectory prediction is critical to interference handling and crane scheduling. Current trajectory predictions lack accuracy because many details are simplified. To enhance accuracy and lessen the trajectory prediction time, a trajectory prediction approach with details (crane acceleration/deceleration, different crane velocities when loading/unloading, and trolley movement) is proposed in this paper. Simulations on different details and their combinations are conducted on a container terminal case study. According to the simulation results, the accuracy of the trajectory prediction can be improved by 20%. The proposed trajectory prediction approach is helpful for building a digital twin of RTCSs and enhancing crane scheduling.
Publications
- Article type
- Year
- Co-author
Year
Open Access
Issue
Complex System Modeling and Simulation 2022, 2(1): 1-17
Published: 30 March 2022
Downloads:108
Total 1