Sort:
Open Access Research Article Issue
6DOF pose estimation of a 3D rigid object based on edge-enhanced point pair features
Computational Visual Media 2024, 10(1): 61-77
Published: 30 November 2023
Abstract PDF (7 MB) Collect
Downloads:27

The point pair feature (PPF) is widely used for 6D pose estimation. In this paper, we propose an efficient 6D pose estimation method based on the PPF framework. We introduce a well-targeted down-sampling strategy that focuses on edge areas for efficient feature extraction for complex geometry. A pose hypothesis validation approach is proposed to resolve ambiguity due to symmetry by calculating the edge matching degree. We perform evaluations on two challenging datasets and one real-world collected dataset, demonstrating the superiority of our method for pose estimation for geometrically complex, occluded, symmetrical objects. We further validate our method by applying it to simulated punctures.

Open Access Research Article Issue
ARM3D: Attention-based relation module for indoor 3D object detection
Computational Visual Media 2022, 8(3): 395-414
Published: 08 March 2022
Abstract PDF (2.5 MB) Collect
Downloads:36

Relation contexts have been proved to be useful for many challenging vision tasks. In the field of 3D object detection, previous methods have been taking the advantage of context encoding, graph embedding, orexplicit relation reasoning to extract relation contexts. However, there exist inevitably redundant relation contexts due to noisy or low-quality proposals. In fact, invalid relation contexts usually indicate underlying scene misunderstanding and ambiguity, which may, on the contrary, reduce the performance in complex scenes. Inspired by recent attention mechanism like Transformer, we propose a novel 3D attention-based relation module (ARM3D). It encompasses object-aware relation reasoning to extract pair-wise relation contexts among qualified proposals and an attention module to distribute attention weights towards different relation contexts. In this way, ARM3D can take full advantage of the useful relation contexts and filter those less relevant or even confusing contexts, which mitigates the ambiguity in detection. We have evaluated the effectiveness of ARM3D by plugging it into several state-of-the-art 3D object detectors and showing more accurate and robust detection results. Extensive experiments show the capability and generalization of ARM3D on 3D object detection. Our source code is available at https://github.com/lanlan96/ARM3D.

Total 2