Sort:
Research Article Issue
Highly oriented MXene/polyvinyl alcohol films prepared by scalable layer-by-layer blade coating for efficient electromagnetic interference shielding and infrared stealth
Nano Research 2024, 17(6): 5651-5660
Published: 09 February 2024
Abstract PDF (4.9 MB) Collect
Downloads:185

Controlling the orientation of two-dimensional MXene within layered films is essential to optimize or tune their mechanical properties and electromagnetic interference shielding (EMI) performance, but achieving the high orientation MXene layers on an industrial scale remains a challenging goal. In this paper, a scalable layer-by-layer blade coating (LbLBC) method was employed to fabricate highly oriented MXene/polyvinyl alcohol (PVA) films. During the LbLBC process, MXene/PVA colloid suffered a strong shearing effect, which induced the ordered alignment of MXene nanosheets along the direction of the blade movement. The orientation of MXene can be effectively adjusted by changing the scraping gap of LbLBC, achieving a maximum Herman orientation factor f of 0.81. As a result, the mechanical properties and EMI performance of the as-prepared MXene/PVA films are in direct proportion to their orientation, with the optimal values of tensile strength of 145.5 MPa, fracture strain of 19.6%, toughness of 17.7 MJ·m−3, and EMI shielding effectiveness of 36.7 dB. Furthermore, the inherently low mid-infrared (mid-IR) emissivity of MXene, combined with the densely oriented structure affords the composite films with IR stealth, resulting in a substantial decrease from 150 to 66.1 °C in the radiative temperature of a surface. Conclusively, these scalable MXene/PVA films exhibit remarkable potential for integration into the next generation of multifunctional protective camouflage materials.

Research Article Issue
Robust double-layered ANF/MXene-PEDOT:PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties
Nano Research 2022, 15(10): 9520-9530
Published: 05 August 2022
Abstract PDF (6.8 MB) Collect
Downloads:125

The strategy of incorporating polymers into MXene-based functional materials has been widely used to improve their mechanical properties, however with inevitable sacrifice of their electrical conductivity and electromagnetic interference (EMI) shielding performance. This study demonstrates a facile yet efficient layering structure design to prepare the highly robust and conductive double-layer Janus films comprised of independent aramid nanofiber (ANF) and Ti3C2Tx MXene/poly(3,4-ethylenedioxy- thiophene):poly(styrenesulfonate) (PEDOT:PSS) layers. The ANF layer serves to provide good mechanical stability, whilst the MXene/PEDOT:PSS layer ensures excellent electrical conductivity. Doping PEDOT:PSS into the MXene layer enhances the interfacial bonding strength between the MXene and ANF layers and improves the hydrophobicity and water/oxidation resistance of MXene layer. The resultant ANF/MXene-PEDOT:PSS Janus film with a conductive layer thickness of 4.4 μm was shown to display low sheet resistance (2.18 Ω/sq), good EMI shielding effectiveness (EMI SE of 48.1 dB), high mechanical strength (155.9 MPa), and overall toughness (19.4 MJ/m3). Moreover, the excellent electrical conductivity and light absorption capacity of the MXene-PEDOT:PSS conductive layer mean that these Janus films display multi-source driven heating functions, producing excellent Joule heating (382 °C at 4 V) and photothermal conversion (59.6 °C at 100 mW/m2) properties.

Total 2