Publications
Sort:
Open Access Research Issue
Trees of Panama: A complete checklist with every geographic range
Forest Ecosystems 2020, 7(3): 42
Published: 29 May 2020
Abstract PDF (2.9 MB) Collect
Downloads:27
Background

Central America is one of the most diverse floristic provinces in the world, but comprehensive plant lists for the region are incomplete and need frequent updating. Full geographic ranges of individual species are seldom known. Our detailed forest inventory plots of Panama thus lack a global geographic perspective. In order to provide one, we assembled a thoroughly vetted checklist of all tree species of Panama, along with an estimate of each one's range size based on published specimen records.

Results

1) Panama has 3043 tree species in 141 families and 752 genera; 57.6% were ≥ 10 m tall and 16.9% were 3-5 m tall.

2) The widest ranges were > 1.5×107 km2, covering the entire neotropics and reaching > 30° latitude; 12.4% of the species had ranges exceeding 107 km2. The median range was 6.9×105 km2.

3) At the other extreme, 16.2% of the species had a range < 20, 000 km2, a criterion suggesting endangered status.

4) Range size increased with a tree species' height and varied significantly among families.

5) Tree census plots, where we mapped and measured all individuals, captured 27.5% of the tree species, but a biased selection relative to range size; only 4.5% of the species in plots had ranges < 20, 000 km2.

Conclusions

Our checklist of the trees of Panama, based on rigorous criteria aimed at matching plot censuses, is 20% larger than previous. By recording species' maximum heights, we allow comparisons with other regions based on matching definitions, and the range sizes provide a quantitative basis for assessing extinction risk. Our next goal is to merge population density from plot censuses to add rigor to predictions of extinction risk of poorly-studied tropical tree species.

Open Access Research Issue
Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot
Forest Ecosystems 2017, 4(4): 17
Published: 20 September 2017
Abstract PDF (3.1 MB) Collect
Downloads:7
Background

The first three censuses of the 50-ha plot at Barro Colorado Island spanned an unusually harsh dry season during the 1983 El Niño. By the early 1990s, we had documented increases in tree mortality, tree growth, and large population fluctuations of many species during the 1982–1985 census interval. At the time, we asserted that increasing drought frequency would greatly affect the forest. With the benefit of five more censuses at Barro Colorado from 1995–2015, we can now put the 1980 conditions in a longer perspective and test the hypothesis that increasing droughtiness has continued to change the forest.

Methods

A 50-ha forest plot on Barro Colorado Island was censused eight times, in 1982 and every five years since 1985. All free-standing woody stems were measured, mapped, and identified in each census.

Results

1) The period 1982–1992 included several extreme dry seasons, not just 1983, but since then there have been few such droughts.

2) Dbh growth declined from a peak in the early 1980s to its lowest in the early 1990s. From 1995–2015 it increased slightly, but not returning to the initial peak. Nearly every species and all dbh categories followed the same pattern.

3) The elevated stand-wide mortality rate of large trees during the 1982–1985 drought has not returned, and most individual species showed the same pattern of elevated mortality in the 1980s followed by low and fairly stable mortality after 1990.

4) Sapling mortality declined after 1985, but rose again in the late-90s, so the 1980s drought period no longer looks unusual. Mortality of individual species' saplings fluctuated erratically, including cases where mortality during the drought was lower than after.

5) Population sizes of individual species fluctuated in all possible directions. Some species declined precipitously during the drought, then recovered, but others did not recover. Other species increased in abundance during the drought.

Conclusions

Droughts of the 1980s elevated tree growth and mortality at Barro Colorado, but since 1990, demographic rates have remained lower, paralleling a moderate climate with few severe droughts after 1990. Moisture-demanding species suffered during the drought, but many have since recovered. We do not know how often such drought periods recur. Moreover, many species' abundances fluctuated over 35 years with no known cause.

Total 2