Publications
Sort:
Open Access Research Issue
Characteristics and chemical reactivity of biogenic volatile organic compounds from dominant forest species in the Jing-Jin-Ji area, China
Forest Ecosystems 2021, 8(4): 52
Published: 01 August 2021
Abstract PDF (2.8 MB) Collect
Downloads:4
Background

Biogenic volatile organic compounds (BVOCs) play an essential role in tropospheric atmospheric chemical reactions. There are few studies conducted on BVOCs emission of dominant forest species in the Jing-Jin-Ji area of China. Based on the field survey, forest resources data and the measured standard emission factors, the Guenther model developed in 1993 (G93) was applied in this paper to estimate the emission of BVOCs from several dominant forest species (Platycladus orientalis, Quercus variabilis, Betula platyphylla, Populus tomentosa, Pinus tabuliformis, Robinia pseudoacacia, Ulmus pumila, Salix babylonica and Larix gmelinii) in the Jing-Jin-Ji area in 2017. Then the spatiotemporal emission characteristics and atmospheric chemical reactivity of these species were extensively evaluated.

Results

The results showed that the total annual BVOCs emission was estimated to be 70.8 Gg Cdyear-1, consisting 40.5 % (28.7 Gg Cdyear-1) of isoprene, 36.0 % (25.5 Gg Cdyear-1) of monoterpenes and 23.4 % (16.6 Gg Cdyear-1) of other VOCs. The emissions from Platycladus orientalis, Quercus variabilis, Populus tomentosa and Pinus tabulaeformis contributed 56.1 %, 41.2 %, 36.0 % and 31.1 %, respectively. The total BVOCs emission from the Jing-Jin-Ji area accounted for 61.9 % and 1.8 % in summer and winter, respectively. Up to 28.8 % of emission was detected from Chengde followed by Beijing with 24.9 %, that mainly distributed in the Taihang Mountains and the Yanshan Mountains. Additionally, the Robinia pseudoacacia, Populus tomentosa, Quercus variabilis, and Pinus tabulaeformis contributed mainly to BVOCs reaction activity.

Conclusions

The BVOCs emission peaked in summer (June, July, and August) and bottomed out in winter (December, January, and February). Chengde contributed the most, followed by Beijing. Platycladus orientalis, Quercus variabilis, Populus tomentosa, Pinus tabulaeformis and Robinia pseudoacacia represent the primary contributors to BVOCs emission and atmospheric reactivity, hence the planting of these species should be reduced.

Open Access Research Issue
Deposition of water-soluble inorganic ions in PM2.5 in a typical forestry system in Beijing, China
Forest Ecosystems 2018, 5(4): 36
Published: 10 September 2018
Abstract PDF (1.9 MB) Collect
Downloads:13
Background

Recent projections expect that Vietnam will be affected most severely by climate change with higher temperatures, more precipitation and rising sea levels. Especially increased temperatures will worsen the situations in cities, amplifying the urban heat island effect. Green infrastructures, i.e. urban trees are a common tool to improve the urban micro-climate for humans. Vital and well growing trees provide greatest benefits such as evaporative cooling, shading, air filtering and carbon storage. However, urban tree growth is often negatively affected by urban growing conditions such as high soil sealing with compacted tree pits providing small growing spaces with limited water, nutrient and oxygen supply, further warm temperatures and high pollution emissions. This study analyzed the growth of urban and rural African mahogany (Khaya senegalensis (Desr.) A. Juss.) trees in the city of Hanoi, Vietnam and the effects of the surrounding climate conditions on tree growth.

Results

The results showed that rural African mahogany trees grew better than trees situated in the city center, which is contrary to other results on tree growth of temperate and subtropical cities worldwide. Moreover tree growth was similar regardless of the time of growth. Other results regarding stem growth of African mahogany located in different areas of Hanoi (east, west, north, city center) revealed a better growth in the northern and western outskirts of the city compared to the growth of trees in the city center.

Conclusion

African mahogany trees in the urban centers of Hanoi showed a decreased growth compared to rural trees, which was likely induced by a low ground-water level and high pollution rates. In view of climate change and global warming, the decreased tree growth in the city center may also affect tree service provision such as shading and cooling. Those climate mitigation solutions are strongly needed in areas severely affected by climate change and global warming such as Vietnam.

Total 2