Publications
Article type
Sort:
Open Access Research Issue
Do root modules still exist after they die?
Forest Ecosystems 2021, 8 (2): 23
Published: 06 April 2021
Abstract PDF (909.4 KB) Collect
Downloads:4
Background

The terminal branch orders of plant root systems are increasingly known as an ephemeral module. This concept is crucial to recognize belowground processes. However, it is unknown if root modules still exist after they die?

Methods

The decomposition patterns of the first five root orders were observed for 3 years using a branch-order classification, a litter-bag method and sequential sampling in a common subalpine tree species (Picea asperata) of southwestern China.

Results

Two root modules were observed during the 3-year incubation. Among the first five branch orders, the first three order roots exhibited temporal patterns of mass loss, nutrients and stoichiometry distinct from their woody mother roots throughout the experimental period. This study, for the first time, reported the decomposition pattern of each individual root order and found a similar decomposition dynamic among ephemeral root branches in a forest tree species.

Conclusions

Results from this study suggest that root modules may also exist after death, while more data are needed for confirmation. The findings may further advance our understanding of architecture-associated functional heterogeneity in the fine-root system and also improve our ability to predict belowground processes.

Open Access Research Issue
Immediate and legacy effects of snow exclusion on soil fungal diversity and community composition
Forest Ecosystems 2021, 8 (2): 22
Published: 16 March 2021
Abstract PDF (5.3 MB) Collect
Downloads:6
Background

Soil fungi play crucial roles in ecosystem functions. However, how snow cover change associated with winter warming affects soil fungal communities remains unclear in the Tibetan forest.

Methods

We conducted a snow manipulation experiment to explore immediate and legacy effects of snow exclusion on soil fungal community diversity and composition in a spruce forest on the eastern Tibetan Plateau. Soil fungal communities were performed by the high throughput sequencing of gene-fragments.

Results

Ascomycota and Basidiomycota were the two dominant fungal phyla and Archaeorhizomyces, Aspergillus and Amanita were the three most common genera across seasons and snow manipulations. Snow exclusion did not affect the diversity and structure of soil fungal community in both snow-covered and snow-free seasons. However, the relative abundance of some fungal communities was different among seasons. Soil fungal groups were correlated with environmental factors (i.e., temperature and moisture) and soil biochemical variables (i.e., ammonium and enzyme).

Conclusions

These results suggest that the season-driven variations had stronger impacts on soil fungal community than short-term snow cover change. Such findings may have important implications for soil microbial processes in Tibetan forests experiencing significant decreases in snowfall.

Total 2