Light-matter interactions in low-dimensional quantum-confined structures can dominate the optical properties of the materials and lead to optoelectronic applications. In anisotropic layered silicon diphosphide (SiP2) crystal, the embedded quasi-one-dimensional (1D) phosphorus–phosphorus (P–P) chains directly result in an unconventional quasi-1D excitonic state, and a special phonon mode vibrating along the P–P chains, establishing a unique 1D quantum-confined system. Alloying SiP2 with the homologous element serves as an effective way to study the properties of these excitons and phonons associated with the quasi-1D P–P chains, as well as the strong interaction between these quasiparticles. However, the experimental observation and the related optical spectral understanding of SiP2 with isoelectronic dopants remain elusive. Herein, with the photoluminescence and Raman spectroscopy measurements, we demonstrate the redshift of the confined excitonic peak and the stiffening of the phonon vibration mode
Publications
- Article type
- Year
- Co-author
Article type
Year
Research Article
Issue
Nano Research 2023, 16(1): 1107-1114
Published: 26 July 2022
Downloads:41
Total 1