Luminescent nanothermometry can precisely and remotely measure the internal temperature of objects at nanoscale precision, which, therefore, has been placed at the forefront of scientific attention. In particular, due to the high photochemical stability, low toxicity, rich working mechanisms, and superior thermometric performance, lanthanide-based ratiometric luminesencent thermometers are finding prevalent uses in integrated electronics and optoelectronics, property analysis of in-situ tracking, biomedical diagnosis and therapy, and wearable e-health monitoring. Despite recent progresses, it remains debate in terms of the underlying temperature-sensing mechanisms, the quantitative characterization of performance, and the reliability of temperature readouts. In this review, we show the origin of thermal response luminescence, rationalize the ratiometric scheme or thermometric mechanisms, delve into the problems in the characterization of thermometric performance, discuss the universal rules for the quantitative comparison, and showcase the cutting-edge design and emerging applications of lanthanide-based ratiometric thermometers. Finally, we cast a look at the challenges and emerging opportunities for further advances in this field.
Publications
- Article type
- Year
- Co-author
Article type
Year
Review Article
Issue
Nano Research 2023, 16(2): 2949-2967
Published: 21 September 2022
Downloads:125
Total 1