Sort:
Open Access Perspective Issue
Reservoir stimulation for unconventional oil and gas resources: Recent advances and future perspectives
Advances in Geo-Energy Research 2024, 13 (1): 7-9
Published: 11 May 2024
Abstract PDF (99.2 KB) Collect
Downloads:6

The first Geo-Energy Frontier Forum with the theme of “opportunities and challenges for geo-energy exploration and development” was successfully held in Wuhan, recently. The forum included 32 sessions, mainly focused on four directions: geo-energy development and reserve, petroleum geophysical exploration, oil and gas geology, and field development engineering. This paper summarizes the key findings in the 22nd session titled “Reservoir stimulation for unconventional oil and gas resources”. A total of 17 experts and scholars participated in the presentations, covering a wide range of topics in unconventional oil and gas resources development. This research collectively highlighted the significance of reservoir stimulation techniques in unconventional oil and gas resource development, including research progress in fracture network modeling techniques, fluid pressure, rock mechanics, fracture propagation, and proppant migration in hydraulic fracturing.

Open Access Short Communication Issue
APyCE: A Python module for parsing and visualizing 3D reservoir digital twin models
Advances in Geo-Energy Research 2023, 8 (3): 206-210
Published: 12 June 2023
Abstract PDF (1.2 MB) Collect
Downloads:121

Engineers, geoscientists, and analysts can benefit from fast, easy, and real-time immersive 3D visualization to enhance their understanding and collaboration in a virtual 3D world. However, converting 3D reservoir data formats between different software programs and open-source standards can be challenging due to the complexity of programming and discrepancies in internal data structures. This paper introduces an open-source Python implementation focused on parsing industry reservoir data formats into a popular open-source visualization data format, Visual Toolkit files. Using object-oriented programming, a simple workflow was developed to export corner-point grids to Visual Toolkit-hexahedron structures. To demonstrate the utility of the software, standard raw input files of reservoir models are processed and visualized using Paraview. This tool aims to accelerate the digital transformation of the oil and gas industry in terms of 3D digital content generation and collaboration.

Open Access Research Highlight Issue
A new upscaling method for microscopic fluid flow based on digital rocks
Advances in Geo-Energy Research 2022, 6 (4): 357-358
Published: 24 June 2022
Abstract PDF (1.3 MB) Collect
Downloads:64

This report presents our new findings in microscopic fluid flow based on digital rocks. Permeability of digital rocks can be estimated by pore-scale simulations using the Stokes equation, but the computational cost can be extremely high due to the complicated pore geometry and the large number of voxels. In this study, a novel method is proposed to simplify the three-dimensional pore-scale simulation to multiple decoupled two-dimensional ones, and each two-dimensional simulation provides the velocity distribution over a slice. By this decoupled simulation approach, the expensive simulation based on the Stokes equation is conducted only on two-dimensional domains, and the final three-dimensional simulation of Darcy equation using the finite difference method is very cheap. The proposed method is validated by both sandstone and carbonate rock samples and shows significant enhancement in the computational speed. This work sheds light on large-scale microscopic fluid flow based on digital rocks.

Total 3