The aspect-based sentiment analysis (ABSA) consists of two subtasks—aspect term extraction and aspect sentiment prediction. Most methods conduct the ABSA task by handling the subtasks in a pipeline manner, whereby problems in performance and real application emerge. In this study, we propose an end-to-end ABSA model, namely, SSi-LSi, which fuses the syntactic structure information and the lexical semantic information, to address the limitation that existing end-to-end methods do not fully exploit the text information. Through two network branches, the model extracts syntactic structure information and lexical semantic information, which integrates the part of speech, sememes, and context, respectively. Then, on the basis of an attention mechanism, the model further realizes the fusion of the syntactic structure information and the lexical semantic information to obtain higher quality ABSA results, in which way the text information is fully used. Subsequent experiments demonstrate that the SSi-LSi model has certain advantages in using different text information.
Publications
- Article type
- Year
- Co-author
Year
Open Access
Issue
Tsinghua Science and Technology 2023, 28(2): 230-243
Published: 29 September 2022
Downloads:118
Total 1