Publications
Sort:
Open Access Research Article Issue
Generic load regulation strategy for enhancing energy efficiency of chiller plants
Building Simulation 2024, 17 (8): 1273-1287
Published: 03 June 2024
Abstract PDF (3.4 MB) Collect
Downloads:0

In many chiller plants, high coefficient of performance (COP) is only achieved at a few favorable part load ratios (PLRs), while the COP is low at many other non-favorable PLRs. To address this issue, this study proposes a generic load regulation strategy that aims to maintain chiller plants operating at high COP, particularly under non-favorable PLRs. This is achieved by incorporating thermal energy storage (TES) units and timely optimizing the charging and discharging power of the integrated TES units. The optimal charging and discharging power is determined by solving a dynamic optimization problem, taking into account the performance constraints of the TES units and the chiller plants. To provide an overview of the energy-saving potential of the proposed strategy, a comprehensive analysis was conducted, considering factors such as building load profiles, COP/PLR curves of chillers, and attributes of the TES units. The analysis revealed that the proposed load regulation strategy has the potential to achieve energy savings ranging from 5.7% to 10.8% for chiller plants with poor COPs under unfavorable PLRs, particularly in buildings with significant load variations.

Research Article Issue
Cooling load characteristics of indoor spaces conditioned by decoupled radiant cooling unit with low radiant temperature
Building Simulation 2022, 15 (12): 2067-2079
Published: 12 July 2022
Abstract PDF (3 MB) Collect
Downloads:48

Decoupled radiant cooling units (DRCUs) are capable of increasing the cooling capacity without increasing condensation risks even using a much lower cooling temperature than conventional radiant cooling units (CRCUs). However, it is unclear whether DRCUs using low radiant cooling temperature will increase the cooling load of the conditioned indoor spaces. In this study, the cooling load characteristics of a thermal chamber conditioned by a DRCU was investigated through developing a steady-state analysis model suitable for both DRCUs and CRCUs. The total/radiative heat flux, as well as the heat exchange with a thermal manikin and walls were analysed under different surface temperatures of DRCUs. The effect of the emissivity of the thermal chamber' external wall on the cooling load was also investigated. Results indicated that the cooling load under the DRCU was slightly smaller than that under the CRCU when the same operative environment was created. Decreasing the infrared emissivity of the exterior wall's inner surface could lead to a significant decrease in the cooling load for both the DRCU and CRCU. By decreasing the wall emissivity from 0.9 to 0.1, the total cooling load of the DRCU can be decreased by 8.4% and the heat gain of the exterior wall decreased by 21.6%. This study serves as a reference for developing the analysis model and understanding the load characteristics when DRCUs are used to create the thermal environment for indoor spaces.

Total 2