Sort:
Cover Article Issue
Modeling urban scale human mobility through big data analysis and machine learning
Building Simulation 2024, 17(1): 3-21
Published: 14 August 2023
Abstract PDF (3.7 MB) Collect
Downloads:30

In the United States, the buildings sector consumes about 76% of electricity use and 40% of all primary energy use and associated greenhouse gas emissions. Occupant behavior has drawn increasing research interests due to its impacts on the building energy consumption. However, occupant behavior study at urban scale remains a challenge, and very limited studies have been conducted. As an effort to couple big data analysis with human mobility modeling, this study has explored urban scale human mobility utilizing three months Global Positioning System (GPS) data of 93,000 users at Phoenix Metropolitan Area. This research extracted stay points from raw data, and identified users’ home, work, and other locations by Density-Based Spatial Clustering algorithm. Then, daily mobility patterns were constructed using different types of locations. We propose a novel approach to predict urban scale daily human mobility patterns with 12-hour prediction horizon, using Long Short-Term Memory (LSTM) neural network model. Results shows the developed models achieved around 85% average accuracy and about 86% mean precision. The developed models can be further applied to analyze urban scale occupant behavior, building energy demand and flexibility, and contributed to urban planning.

Research Article Issue
A general spatial-temporal framework for short-term building temperature forecasting at arbitrary locations with crowdsourcing weather data
Building Simulation 2023, 16(6): 963-982
Published: 10 February 2023
Abstract PDF (3.9 MB) Collect
Downloads:20

Weather forecasting has been a critical component to predict and control building energy consumption for better building energy management. Without accessibility to other data sources, the onsite observed temperatures or the airport temperatures are used in forecast models. In this paper, we present a novel approach by utilizing the crowdsourcing weather data from neighboring personal weather stations (PWS) to improve the weather forecast accuracy around buildings using a general spatial-temporal modeling framework. The final forecast is based on the ensemble of local forecasts for the target location using neighboring PWSs. Our approach is distinguished from existing literature in various aspects. First, we leverage the crowdsourcing weather data from PWS in addition to public data sources. In this way, the data is at much finer time resolution (e.g., at 5-minute frequency) and spatial resolution (e.g., arbitrary location vs grid). Second, our proposed model incorporates spatial-temporal correlation information of weather variables between the target building and a set of neighboring PWSs so that underlying correlations can be effectively captured to improve forecasting performance. We demonstrate the performance of the proposed framework by comparing to the benchmark models on temperature forecasting for a building located at an arbitrary location at San Antonio, Texas, USA. In general, the proposed model framework equipped with machine learning technique such as Random Forest can improve forecasting by 50% compares with persistent model and has 90% chance to outperform airport forecast in short-term forecasting. In a real-time setting, the proposed model framework can provide more accurate temperature forecasting results compared with using airport temperature forecast for most forecast horizon. Moreover, we analyze the sensitivity of model parameters to gain insights on how crowdsourcing data from the neighboring personal weather stations impacts forecasting performance. Finally, we implement our model in other cities such as Syracuse and Chicago to test the model’s performance in different landforms and climate types.

Research Article Issue
Nationwide evaluation of energy and indoor air quality predictive control and impact on infection risk for cooling season
Building Simulation 2023, 16(2): 205-223
Published: 30 September 2022
Abstract PDF (4.9 MB) Collect
Downloads:21

Since the coronavirus disease 2019, the extended time indoors makes people more concerned about indoor air quality, while the increased ventilation in seeks of reducing infection probability has increased the energy usage from heating, ventilation, and air-conditioning systems. In this study, to represent the dynamics of indoor temperature and air quality, a coupled grey-box model is developed. The model is identified and validated using a data-driven approach and real-time measured data of a campus office. To manage building energy usage and indoor air quality, a model predictive control strategy is proposed and developed. The simulation study demonstrated 18.92% energy saving while maintaining good indoor air quality at the testing site. Two nationwide simulation studies assessed the overall energy saving potential and the impact on the infection probability of the proposed strategy in different climate zones. The results showed 20%–40% energy saving in general while maintaining a predetermined indoor air quality setpoint. Although the infection risk is increased due to the reduced ventilation rate, it is still less than the suggested threshold (2%) in general.

Total 3