The outbreak and spreading of the COVID-19 pandemic have had a significant impact on transportation system. By analyzing the impact of the pandemic on the transportation system, the impact of the pandemic on the social economy can be reflected to a certain extent, and the effect of anti-pandemic policy implementation can also be evaluated. In addition, the analysis results are expected to provide support for policy optimization. Currently, most of the relevant studies analyze the impact of the pandemic on the overall transportation system from the macro perspective, while few studies quantitatively analyze the impact of the pandemic on individual spatiotemporal travel behavior. Based on the license plate recognition (LPR) data, this paper analyzes the spatiotemporal travel patterns of travelers in each stage of the pandemic progress, quantifies the change of travelers' spatiotemporal behaviors, and analyzes the adjustment of travelers' behaviors under the influence of the pandemic. There are three different behavior adjustment strategies under the influence of the pandemic, and the behavior adjustment is related to the individual's past travel habits. The paper quantitatively assesses the impact of the COVID-19 pandemic on individual travel behavior. And the method proposed in this paper can be used to quantitatively assess the impact of any long-term emergency on individual micro travel behavior.



This study aims to make full use of the advantages of connected and autonomous vehicles (CAVs) and dedicated CAV lanes to ensure all CAVs can pass intersections without stopping.
The authors developed a signal coordination model for arteries with dedicated CAV lanes by using mixed integer linear programming. CAV non-stop constraints are proposed to adapt to the characteristics of CAVs. As it is a continuous problem, various situations that CAVs arrive at intersections are analyzed. The rules are discovered to simplify the problem by discretization method.
A case study is conducted via SUMO traffic simulation program. The results show that the efficiency of CAVs can be improved significantly both in high-volume scenario and medium-volume scenario with the plan optimized by the model proposed in this paper. At the same time, the progression efficiency of regular vehicles is not affected significantly. It is indicated that full-scale benefits of dedicated CAV lanes can only be achieved with signal coordination plans considering CAV characteristics.
To the best of the authors’ knowledge, this is the first research that develops a signal coordination model for arteries with dedicated CAV lanes.