Sort:
Open Access Original Article Issue
Pseudopotential-based multiple-relaxation-time lattice Boltzmann model for multicomponent and multiphase slip flow
Advances in Geo-Energy Research 2023, 9(2): 106-116
Published: 03 August 2023
Abstract PDF (697.2 KB) Collect
Downloads:47

The microscale liquid flow in nanoscale systems considering slip boundary has been widely studied in recent years, however, they are limited to single-phase flow. As in nature, multicomponent and multiphase flows can also exist with non-zero slip velocities, such as oil/water slip flow in nanoporous shale. In this paper, a novel multicomponent-multiphase multiple-relaxation-time lattice Boltzmann method with a combinational slip boundary condition is developed to study the two-phase slip flow behaviors. The proposed combined slip boundary condition is derived from adjustments to the conventional diffusive Maxwell’s reflection and half-way bounce-back scheme boundary parameters, incorporating a compelled conservation requirement. With the analysis of simulations for the layer, slug, and droplet types of two-phase flow in single pores, and two-phase flow in porous media with complex wall geometry, it can be concluded that the proposed schemes of two-phase slip boundary conditions are particularly suitable for multicomponent and multiphase flow with a non-zero slip velocity. The proposed model can be used to determine relative permeability and simulate spontaneous imbibition in particular in shale reservoirs where those flow properties are hard-to-determine.

Open Access Original Article Issue
Capillary and viscous forces during CO2 flooding in tight reservoirs
Capillarity 2022, 5(6): 105-114
Published: 10 October 2022
Abstract PDF (1.1 MB) Collect
Downloads:67

In this study, the multiphase multicomponent Shan-Chen lattice Boltzmann method is employed to analyze the impact of capillary force on oil-CO2-water fluid flow and enhanced oil recovery. Various sizes of the single throat are designed to simulate the interaction between displacing and displaced phases as well as their mechanical equilibrium. Several sensitivities are taken into account, such as wettability, miscibility, interfacial tension, and pore aperture. Based on the objective reservoir conditions, supercritical CO2 as an injection fluid is adopted to study the influence of different displacement patterns on the mechanical equilibrium in both homogenous and heterogeneous porous media, in which enhanced oil recovery is also quantitatively estimated. The results show that the water-alternating-gas injection pattern reduces the moving speed of the leading edge by increasing the swept area of the residual oil, and inhibits the breakthrough effect of the gas, making it the optimal displacement method in terms of the degree of oil production. Compared with the results of different displacement patterns, the enhanced oil recovery of water-alternating-gas injection is the highest, followed by supercritical CO2 flooding after water flooding, and lastly, continuous supercritical CO2 flooding.

Total 2