Sort:
Open Access Research Article Issue
Anti-hyperglycemic effects of dihydromyricetin in streptozotocin-induced diabetic rats
Food Science and Human Wellness 2021, 10(2): 155-162
Published: 22 March 2021
Abstract PDF (1.1 MB) Collect
Downloads:53

Dihydromyricetin (DHM), as a bioactive flavanonol compound, is mainly found in "Tengcha" (Ampelopsis grossedentata) cultivated in south of China. This study aimed to investigate the anti-hyperglycemic and anti-dyslipidemic activities of DHM using type 2 diabetes mellitus (T2D) rats, which was induced by feeding with high fat and fructose diet for 42 days and intraperitoneal administration of streptozocin. Forty-eight freshly-weaned rats were randomly assigned into the negative control (Blank), low dose (100 mg/kg), medium dose (200 mg/kg), high dose (400 mg/kg), and positive (40 mg/kg, met) groups. Fasting blood glucose and body weight were measured at weekly interval. Oral glucose tolerance tests were performed on days 42. The results revealed that DHM possessed significant antihyperglycaemic and antihyperinsulinemic effects. Moreover, after the DHM treatment, p-Akt and p-AMPK expression was upregulated, and glycogen synthase kinase-3β (GSK-3β) expression was downregulated, indicating that the potential anti-diabetic mechanism of DHM might be due to the regulation of the AMPK/Akt/GSK-3β signaling pathway.

Research Article Issue
Effect of AAPH oxidation on digestion characteristics of seed watermelon (Citrullus lanatus var) kernels protein isolates
Food Science and Human Wellness 2020, 9(4): 402-410
Published: 21 July 2020
Abstract PDF (2.8 MB) Collect
Downloads:33

Seed watermelon kernel is a typical complex food with high fat and protein contents. During storage and processing, it is often affected by various factors to undergo interactions between components, which lead to its quality change. In this experiment, seed watermelon kernels were used as research objects, and the effects of 2′-Azobis (2-amidinopropane) dihydrochloride (AAPH) on seed watermelon kernel protein isolates (WMP) were investigated. The structure and digestion characteristics of WMP after oxidation were studied. The results showed that with the increase of AAPH concentration (0.05−5 mol/L), WMP showed obvious aggregation, and its solubility decreased from 6.76 mg/mL to 9.59 mg/mL. The free sulfhydryl content of WMP was 18.24 mmol/g decreased to 11.25 mmol/g, α-helix decreased and β-sheet decreased in secondary structure, and its disulfide bond increased by 43.06 mmol/g from 39.57 mmol/g, enthalpy (ΔH) and denaturation temperature increased (Td) (P < 0.05). By mass spectrometry results of simulated gastric digestion products, it was found that oxidation adversely affected the digestion characteristics of WMP. It can be seen that the lipid oxidation product APPH of seed watermelon kernel can significantly affect the structure and function of the protein extracted from the seed kernel.

Total 2