Sort:
Open Access Research Article Issue
Dielectric genetic tailoring strategy dominating MoSe2@rGO assembled architecture with electromagnetic functions
Journal of Advanced Ceramics 2024, 13(9): 1461-1472
Published: 25 September 2024
Abstract PDF (9.1 MB) Collect
Downloads:120

The intensification of electromagnetic (EM) pollution and the development of military detection technology have increased the requirements for EM functional materials. In this study, a molybdenum diselenide@reduced graphene oxide (MoSe2@rGO)-assembled architecture is constructed, where the MoSe2 nanosheets grow uniformly on the rGO sheets. By regulating the contributions of conduction genes and polarization genes, adjustable EM functions of MoSe2@rGO hybrids can be achieved. The reflection loss (RL) of the sample can reach −68.7 dB at a thickness of 2.32 mm, and the maximum effective absorption bandwidth can reach 5.04 GHz. When conduction genes dominate, the MoSe2@rGO hybrids exhibit a 98.7% electromagnetic interference (EMI) shielding efficiency. The design of the EM energy conversion device and the results of the radar cross section (RCS) simulation demonstrate the practical application potential of the material. This work provides inspiration for designing multifunctional EM materials.

Open Access Research paper Issue
Confinedly implanting Fe3O4 nanoclusters on MoS2 nanosheets to tailor electromagnetic properties for excellent multi-bands microwave absorption
Journal of Materiomics 2022, 8(3): 577-585
Published: 14 December 2021
Abstract Collect

High efficiency microwave absorption (MA) materials with tunable electromagnetic (EM) features have been highly sought. However, it is still a challenge to achieve multi-bands absorption performance by simple optimizing the chemical composition of MA materials. Herein, a simple solvothermal method was used to embed magnetic Fe3O4 nanoclusters on MoS2 nanosheets, in which magnetic nanoclusters were quantitatively customized. More importantly, the MA frequency and MA properties of the material are highly tailored, and multi-bands absorption is achieved. The minimum reflection loss (RL) of Fe3O4/MoS2 composite reaches −87.24 dB and is about 4 times more than pure MoS2 nanosheets. The effective absorption bandwidth reaches 5.52 GHz (≤-10 dB). These desirable properties result from the introduction of appropriate magnetic Fe3O4 nanoclusters, which provide optimal synergistic effect of dielectric and magnetic losses. This result provides a feasible idea for designing high efficiency MA materials with tunable EM features in the future.

Total 2