Antiferroelectrics (AFEs) possess great potential for high performance dielectric capacitors, due to their distinct double hysteresis loop with high maximum polarization and low remnant polarization. However, the well-known NaNbO3 lead-free antiferroelectric (AFE) ceramic usually exhibits square-like P–E loop related to the irreversible AFE P phase to ferroelectric (FE) Q phase transition, yielding low recoverable energy storage density (Wrec). Herein, significantly improved Wrec up to 3.3 J/cm3 with good energy storage efficiency (η) of 42.4% was achieved in Na0.7Ag0.3Nb0.7Ta0.3O3 (30Ag30Ta) ceramic with well-defined double P–E loop, by tailoring the A-site electronegativity with Ag+ and B-site polarizability with Ta5+. The Transmission Electron Microscope, Piezoresponse Force Microscope and in-situ Raman spectra results verified a good reversibility between AFE P phase and high-field-induced FE Q phase. The improved stability of AFE P phase, being responsible for the double P–E loop and improved Wrec, was attributed to the decreased octahedral tilting angles and cation displacements. This mechanism was revealed by synchrotron X-ray diffraction and Scanning Transmission Electron microscope. This work provides a good paradigm for achieving double P–E loop and high energy storage density in NaNbO3-based ceramics.
- Article type
- Year
- Co-author
The NaNbO3 antiferroelectrics have been considered as a potential candidate for dielectric capacitors applications. However, the high-electric-field-unstable antiferroelectric phase resulted in low energy storage density and efficiency. Herein, good energy storage properties were realized in (1-x)NaNbO3-xNaTaO3 ceramics, by building a new phase boundary. As a result, a high recoverable energy density (Wrec) of 2.2 J/cm3 and efficiency (η) of 80.1% were achieved in 0.50NaNbO3-0.50NaTaO3 ceramic at 300 kV/cm. The excellent energy storage performance originates from an antiferroelectric-paraelectric phase boundary with simultaneously high polarization and low hysteresis, by tailoring the ratio of antiferroelectric and paraelectric phases. Moreover, the 0.50NaNbO3-0.50NaTaO3 ceramic also exhibited good temperature and frequency stability, together with excellent charge-discharge performance. The results pave a good way of designing new NaNbO3-based antiferroelectrics with good energy storage performance.