Rare-earth phosphates (REPO4) are regarded as one of the promising thermal/environmental barrier coating (T/EBC) materials for SiCf/SiC ceramic matrix composites (SiC-CMCs) owing to their excellent resistance to water vapor and CaO–MgO–Al2O3–SiO2 (CMAS). Nevertheless, a relatively high thermal conductivity (κ) of the REPO4 becomes the bottleneck for their practical applications. In this work, novel xenotime-type high-entropy (Dy1/7Ho1/7Er1/7Tm1/7Yb1/7Lu1/7Y1/7)PO4 (HE (7RE1/7)PO4) has been designed and synthesized for the first time to solve this issue. HE (7RE1/7)PO4 with a homogeneous rare-earth element distribution exhibits high thermal stability up to 1750 ℃ and good chemical compatibility with SiO2 up to 1400 ℃. In addition, the thermal expansion coefficient (TEC) of HE (7RE1/7)PO4 (5.96×10−6 ℃−1 from room temperature (RT) to 900 ℃) is close to that of the SiC-CMCs. What is more, the thermal conductivities of HE (7RE1/7)PO4 (from 4.38 W·m−1·K−1 at 100 ℃ to 2.25 W·m−1·K−1 at 1300 ℃) are significantly decreased compared to those of single-component REPO4 with the minimum value ranging from 9.90 to 4.76 W·m−1·K−1. These results suggest that HE (7RE1/7)PO4 has the potential to be applied as the T/EBC materials for the SiC-CMCs in the future.
Publications
- Article type
- Year
- Co-author
Article type
Year
Open Access
Research Article
Issue
Journal of Advanced Ceramics 2023, 12(5): 1033-1045
Published: 10 April 2023
Downloads:526
Total 1