Publications
Sort:
Open Access Research paper Issue
Accelerated testing for automated vehicles safety evaluation in cut-in scenarios based on importance sampling, genetic algorithm and simulation applications
Journal of Intelligent and Connected Vehicles 2018, 1 (1): 28-38
Published: 14 August 2018
Abstract PDF (1.7 MB) Collect
Downloads:7
Purpose

It would take billions of miles’ field road testing to demonstrate that the safety of automated vehicle is statistically significantly higher than the safety of human driving because that the accident of vehicle is rare event.

Design/methodology/approach

This paper proposes an accelerated testing method for automated vehicles safety evaluation based on improved importance sampling (IS) techniques. Taking the typical cut-in scenario as example, the proposed method extracts the critical variables of the scenario. Then, the distributions of critical variables are statistically fitted. The genetic algorithm is used to calculate the optimal IS parameters by solving an optimization problem. Considering the error of distribution fitting, the result is modified so that it can accurately reveal the safety benefits of automated vehicles in the real world.

Findings

Based on the naturalistic driving data in Shanghai, the proposed method is validated by simulation. The result shows that compared with the existing methods, the proposed method improves the test efficiency by 35 per cent, and the accuracy of accelerated test result is increased by 23 per cent.

Originality/value

This paper has three contributions. First, the genetic algorithm is used to calculate IS parameters, which improves the efficiency of test. Second, the result of test is modified by the error correction parameter, which improves the accuracy of test result. Third, typical high-risk cut-in scenarios in China are analyzed, and the proposed method is validated by simulation.

Total 1