Publications
Sort:
Open Access Research Article Issue
Zwitterionic Surfactant Modified Carbon Nanotubes Incorporated Percolative Polymer Composites with Improved Features
Nano Biomedicine and Engineering 2023, 15(2): 136-149
Published: 15 August 2023
Abstract PDF (5 MB) Collect
Downloads:95

Modification of carbon nanotubes (CNTs) and their incoporation in polymer matrix have attracted much attention of researchers. As maximum dispersion of CNTs could enhance the properties of matrix dynamically, researchers are trying to find new methodologies to obtain this target. However, maximum dispersion remains a great challenge and under the stage of progress. Here, we claimed the synthesis of composites with a highly uniform dispersion of the filler that results significantly improved electrical features. In this regard, composites of polymethylmethacrylate (PMMA) were fabricated by using pristine and zwitterionic surfactant (ZIS) modified CNTs (ZIS-CNTs). Characterization was done by using ultraviolet–visible (UV–Vis), Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermo gravimetric analysis (TGA) techniques. UV–Vis and FTIR spectroscopy confirmed the synthesis of ZIS-CNTs and composites. UV–Vis spectra showed an increase in wavelength with the decrease in optical band gap for CNTs-based (CNTs/PMMA) and ZIS-CNTs-based (ZIS-CNTs/PMMA) composites. SEM and XRD studies confirmed a significant homogenoeus and uniform dispersion of CNTs in ZIS-CNTs/PMMA composites. An increase in conductivity of PMMA from 10−9 to 10−2 and 10−1 S/cm was observed on addition of less than 1% (mass fraction) of CNTs without and with modification by ZIS, respectively. Low values of percolation threshold at 0.5% and 0.005% for CNTs/PMMA and ZIS-CNTs/PMMA composites were obtained, respectively. TGA analysis showed a slow rate of decomposition for composites than that for pure PMMA. Around 600 °C, 3% CNTs/PMMA and 7% ZIS-CNTs/PMMA composites were left in the end, which depicts the increase in thermal stability of PMMA. This work depicts a better dispersion of CNTs in PMMA matrix via slight modification in synthesis as well as by using ZIS as surfactant.

Open Access Research Article Issue
Surface Modification of Mesoporous Silica Nanoparticles with Hexamethyl Disilazane as Smart Carriers for Tocopherol Acetate
Nano Biomedicine and Engineering 2022, 14(3): 216-224
Published: 30 November 2022
Abstract PDF (4 MB) Collect
Downloads:144

Nowadays, nanotechnology is growing very fast, appearing every day in many fields related to this nanotechnology. In the present study silica nanoparticles (Si NPs) were synthesized, their surface was modified using a silazane and mesoporous Si NPs were further used for the loading tocopherol acetate. Si NPs were synthesized from tetraethyl orthosilicate (TEOS) in the presence of NaOH, with an easily handled, well known Stober method. In this, procedure TEOS was used as a source of silica and treated with NaOH and H2O, undergoing condensation and hydrolysis reactions to produce Si NPs. These Si NPs were then modified by the hexamethyl silazane to avoid agglomeration and can be used easily for targeted delivery, as smart carriers. In the end, tocopherol acetate was successfully loaded in the modified Si NPs and different parameters were recorded for optimum loading. All the samples were characterized through SEM XRD, FTIR, BET and UV-VIS spectroscopy. XRD peaks reveled the typical peak of mesoporous Si NPs appeared at 2θ = 22°. The pore size was found to be 2.45 nm. BET surface area was found to be 694.29 m2/g. FTIR presented the main peaks of functional groups at 1600 cm-1, 1000 cm-1 and 2900 cm-1 respectively. Modified Si NPs were synthesized and characterized, and the tocopherol was loaded inside the mesoporous Si NPs successfully. These experiments showed that mesoporous Si NPs can be used as smart carriers to deliver broad types of drugs efficiently.

Total 2